Advertisement

Pramana

, 92:13 | Cite as

Electromagnetically-induced transparency-like transmission characteristics of a waveguide coupled to a microsphere resonator

  • C Y Zhao
  • C M Zhang
Article
  • 11 Downloads

Abstract

The limitation of traditional microring mode resonance, the microsphere confocal cavity is the best candidate for a low loss and controllable linewidth. Based on the transform matrix method, we investigate the waveguide coupled to a microsphere whispering-gallery mode (WGM) system. We find that the confocal cavity mode is completely different from the traditional ring cavity mode. The confocal cavity mode is excited in asymmetrical dual microsphere systems, and the spectrum of asymmetrical dual microsphere systems appear as an electromagnetically-induced transparency (EIT)-like profile, whereas the spectrum of symmetrical dual microsphere systems appears as Lorentz profile. The traditional ring cavity mode is excited in the symmetrical single microsphere system.

Keywords

Microsphere resonators confocal mode asymmetrical 

PACS Nos

42.79.–e 42.79.Gn 

Notes

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant No. 11504074) and the State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shan Xi University, Shan Xi, China (Grant No. KF201801).

References

  1. 1.
    C Y Zhao, Pramana – J. Phys. 86, 1343 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Y C Meng, Q Z Guo, W H Tan and Z M Huang, J. Opt. Soc. Am. A 21, 1518 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    A Yariv, Electron. Lett. 36, 321 (2000)CrossRefGoogle Scholar
  4. 4.
    D D Smith and H Chang, J. Mod. Opt. 51, 2503 (2004)ADSGoogle Scholar
  5. 5.
    M L Gorodetsky, A A Savchenkov and V S Ilchenko, Opt. Lett. 21, 453 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    M Cai, O Painter and K J Vahala, Phys. Rev. Lett. 85, 74 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    T Ioppolo, N Das and M V Otugen, J. Appl. Phys. 107, 103105 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    M Cai, O Painter, K J Vahala and P C Sercel, Opt. Lett. 25, 1430 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    B Peng, S K Özdemir, W J Chen, F Nori and L Yang, Nat. Commun. 5, 5082 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    C Y Zhao and W H Tan, J. Mod. Opt. 62, 313 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    C Y Zhao and F Ge, J. Mod. Opt. 61, 435 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Introduction of Solid-state Lasers Writing Group: Introduction of solid-state lasers (Shanghai People’s Press, 1974)Google Scholar
  13. 13.
    M Born and E Wolf, Principles of optics, 7th (expanded) edn (Cambridge University Press, Cambridge, 1999)CrossRefGoogle Scholar
  14. 14.
    S Schiller and R L Byer, Opt. Lett. 16, 1138 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    T Ling, S L Chen and L J Guo, Appl. Phys. Lett. 98, 204103 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    F Vollmer, S Arnold and D Keng, Proc. Natl Acad. Sci. USA 105, 20701 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.College of ScienceHangzhou Dianzi UniversityZhejiangChina
  2. 2.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-ElectronicsShanxi UniversityTaiyuanChina
  3. 3.Nokia Solutions and NetworksHangzhouChina

Personalised recommendations