Advertisement

Pramana

, 92:7 | Cite as

Periodic solution of the cubic nonlinear Klein–Gordon equation and the stability criteria via the He-multiple-scales method

  • Yusry O El-DibEmail author
Article
  • 62 Downloads

Abstract

The current work demonstrated a new technique to improve the accuracy and computational efficiency of the nonlinear partial differential equation based on the homotopy perturbation method (HPM). In this proposal, two different homotopy perturbation expansions, the outer expansion and the inner one, are introduced based on two different homotopy parameters. The multiple-scale homotopy technique (He-multiple-scalas method) is applied as an outer perturbation for the nonlinear Klein–Gordon equation. A highly accurate periodic temporal solution has been derived from three orders of perturbation. The amplitude equation, which is imposed as a uniform condition, is of the fourth-order cubic–quintic nonlinear Schrödinger equation. The standard HPM with another homotopy parameter has been used as an inner perturbation to obtain a spatial solution of the nonlinear Schrödinger equation. The cubic–quintic Landau equation is obtained in the inner perturbation technique. Finally, the approximate solution is derived from the temporal and spatial solutions. Further, two different tools are used to obtain the same stability conditions. One of them is a new tool based on the HPM, by constructing the nonlinear frequency. The method adopted here is important and powerful for solving partial differential nonlinear oscillator systems arising in nonlinear science and engineering.

Keywords

Multiple scales homotopy perturbation method cubic nonlinear Klein–Gordon equation cubic–quintic nonlinear Schrödinger equation nonlinear Landau equation stability analysis 

PACS Nos

02.60.Lj 02.70.Wz 02.30.Jr 45.10.Hj 46.40.Ff 

References

  1. 1.
    E A Deeba and S A Khuri, J. Comput. Phys. 124, 442 (1996)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S M El-Sayed, Chaos Solitons Fractals 18, 1025 (2003)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    D Kaya and S M El-Sayed, Appl. Math. Comput. 156, 341 (2004)MathSciNetGoogle Scholar
  4. 4.
    M Wazwaz, Appl. Math. Comput. 173, 165 (2006)MathSciNetGoogle Scholar
  5. 5.
    G Adomian, Solving frontier problems of physics: The decomposition method (Kluwer Academic, Dordrecht, 1994)Google Scholar
  6. 6.
    E Yusufoglu, Appl. Math. Lett. 21, 669 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    B Batiha, Aust. J. Basic Appl. Sci. 3, 3876 (2009)MathSciNetGoogle Scholar
  8. 8.
    J H He, Int. J. Nonlinear Mech. 34, 699 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    Y Khan, Int. J. Nonlinear Sci. Numer. 10, 1373 (2009)Google Scholar
  10. 10.
    M E A Rabie, Afr. J. Math. Comput. Sci. Res8, 37 (2015)CrossRefGoogle Scholar
  11. 11.
    S A Khuri, J. Appl. Math. 1, 141 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Y Keskin, S Servi and G Oturanc, Proceedings of the World Congress on Engineering (WCE, London, UK, 2011) Vol. 1Google Scholar
  13. 13.
    Z Odibat and S Momani, Phys. Lett. A 365, 351 (2007)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    D Kumar, J Singh, S Kumar and S Suchila, Alex. Eng. J. 53, 469 (2014)CrossRefGoogle Scholar
  15. 15.
    W Greiner, Relativistic quantum mechanics – wave equations, 3rd edn (Springer-Verlag, Berlin, 2000)CrossRefGoogle Scholar
  16. 16.
    M Dehghan and A Shokri, J. Comput. Appl. Math. 230, 400 (2009)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    A M Wazwaz, Commun. Nonlinear Sci. Numer. Simul. 13, 889 (2008)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    A M Wazwaz, Appl. Math. Comput. 167, 1179 (2005)MathSciNetGoogle Scholar
  19. 19.
    S M El-Sayed, Chaos Solitons Fractals 18, 1025 (2003)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A Arda, C Tezcan and R Sever, Pramana – J. Phys. 88: 39 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Sirendaoreji, Chaos Solitons Fractals 31, 943 (2007)Google Scholar
  22. 22.
    M Rentoul and P D Ariel, Nonlinear Sci. Lett. A 2, 17 (2011)Google Scholar
  23. 23.
    M A Abdou, Nonlinear Sci. Lett. B 1, 99 (2011)Google Scholar
  24. 24.
    M Y Adamu and P Ogenyi, Nonlinear Sci. Lett. A 8, 240 (2017)Google Scholar
  25. 25.
    Y O El-Dib, Sci. Eng. Appl. 2, 96 (2017)Google Scholar
  26. 26.
    Y O El-Dib, Nonlinear Sci. Lett. A 8, 352 (2017)Google Scholar
  27. 27.
    Y O El-Dib, Int. Ann. Sci. 5, 12 (2018)Google Scholar
  28. 28.
    H Aminikhah, F Pournasiri and F Mehrdoust, Pramana – J. Phys 86, 19 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    J H He, Comput. Meth. Appl. Mech. Eng. 178, 257 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    J H He, Int. J. Nonlinear Mech. 35, 37 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    J H He, Comput. Math. Appl. 57, 410 (2009)MathSciNetCrossRefGoogle Scholar
  32. 32.
    J H He, Topol. Method Nonlinear Anal. 31, 205 (2008)ADSGoogle Scholar
  33. 33.
    J H He, Int. J. Mod. Phys. B 20, 25561 (2006)Google Scholar
  34. 34.
    J H He, Int. J. Mod. Phys. B 22, 3487 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    J H He, Therm. Sci. 14, 565 (2010)ADSGoogle Scholar
  36. 36.
    J H He, Int. J. Mod. Phys. B 20, 1141 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    J H He, Indian J. Phys. 88, 193 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    J H He, Abstr. Appl. Anal. 2012, 857612 (2012)Google Scholar
  39. 39.
    M Madani, M Fathizadeh, Y Khan and A Yildirim, Math. Comput. Model. 53, 1937 (2011)CrossRefGoogle Scholar
  40. 40.
    H K Mishra and A K Nagar, J. Appl. Math. 2012, 180315 (2012)Google Scholar
  41. 41.
    Z J Liu, M Adamu, S Yunbunga and J He, Therm. Sci. 21, 1843 (2017)CrossRefGoogle Scholar
  42. 42.
    A H Nayfeh, J. Appl. Mech. 4, 584 (1976)CrossRefGoogle Scholar
  43. 43.
    Y O El-Dib, Appl. Math. Lett. 7, 89 (1994)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Y O El-Dib, Nonlinear Dyn. 24, 399 (2001)MathSciNetCrossRefGoogle Scholar
  45. 45.
    A H Nayfeh, Perturbation methods (Wiley, New York, 1973)zbMATHGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of EducationAin Shams UniversityCairo, HeliopolisEgypt

Personalised recommendations