Advertisement

Pramana

, 92:9 | Cite as

Semirational rogue waves for the three coupled variable-coefficient nonlinear Schrödinger equations in an inhomogeneous multicomponent optical fibre

  • Han-Peng Chai
  • Bo TianEmail author
  • Jun Chai
  • Zhong Du
Article
  • 66 Downloads

Abstract

In this paper, we investigate the three coupled variable-coefficient nonlinear Schrödinger equations, which describe the amplification or attenuation of the picosecond pulse propagation in the inhomogeneous multicomponent optical fibre with different frequencies or polarisations. Based on the Darboux dressing transformation, semirational rogue wave solutions are derived. Semirational rogue waves, Peregrine combs and Peregrine walls are obtained and demonstrated. Splitting behaviour of the semirational Peregrine combs and attenuating phenomenon of the semirational Peregrine wall are exhibited. Effects of the group velocity dispersion, nonlinearity and fibre gain / loss are discussed according to the different fibres. We find that the maximum amplitude of the hump of the semirational rogue wave is less than nine times the background height due to the interaction between the soliton part and rogue wave part. Further, there is a bent in the soliton part of the semirational rogue.

Keywords

Inhomogeneous multicomponent optical fibre picosecond pulse three coupled variable-coefficient nonlinear Schrödinger equations Darboux dressing transformation semirational rogue waves 

PACS Nos

05.45.Yv 47.35.Fg 02.30.Jr 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos 11772017, 11272023 and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05) and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

References

  1. 1.
    A Hasegawa and F Tappert, Appl. Phys. Lett. 23, 171 (1973) Q M Huang and Y T Gao, Nonlinear Dyn. 89, 2855 (2017) X Y Gao, Ocean Engng 96, 245 (2015)Google Scholar
  2. 2.
    L F Mollenauer, R H Stolen and J P Gordon, Phys. Rev. Lett. 45, 1095 (1980) G F Deng, Y T Gao and X Y Gao, Wave Random Complex. 28, 468 (2018) Y J Feng, Y T Gao and X Yu, Nonlinear Dyn. 91, 29 (2018) Q M Huang, Y T Gao, S L Jia, Y L Wang and G F Deng, Nonlinear Dyn. 87, 2529 (2017)Google Scholar
  3. 3.
    L Wang, Z Q Wang, W R Sun, Y Y Shi, M Li and M Xu, Commun. Nonlinear Sci. Numer. Simulat. 47, 190 (2017) G F Deng and Y T Gao, Eur. Phys. J. Plus 132, 255 (2017) P Jin, C A Bouman and K D Sauer, IEEE Trans. Comput. Imaging 1, 200 (2015)Google Scholar
  4. 4.
    G Herink, F Kurtz, B Jalali, D R Solli and C Ropers, Science 356, 50 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    K Krupa, K Nithyanandan, U Andral, P Tchofo-Dinda and P Grelu, Phys. Rev. Lett. 118, 243901 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    P Wang, X Xiao and C Yang, Opt. Lett. 42, 29 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    W Liu, M Liu, Y OuYang, H Hou, G Ma, M Lei and Z Wei, Nanotechnology 29, 174002 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    D J Ding, D Q Jin and C Q Dai, Therm. Sci. 21, 1701 (2017)CrossRefGoogle Scholar
  9. 9.
    Y Y Wang, L Chen, C Q Dai, J Zheng and Y Fan, Nonlinear Dyn. 90, 1269 (2017)CrossRefGoogle Scholar
  10. 10.
    K Roy, S K Ghosh and P Chatterjee, Pramana – J. Phys. 86, 873 (2016)Google Scholar
  11. 11.
    A R Seadawy, Pramana – J. Phys. 89: 49 (2016)MathSciNetGoogle Scholar
  12. 12.
    D H Peregrine, J. Aust. Math. Soc. B 25, 16 (1983)CrossRefGoogle Scholar
  13. 13.
    A Ankiewicz, J M Soto-Crespo and N Akhmediev, Phys. Rev. E 81, 046602 (2010)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    C G L Tiofack, S Coulibaly, M Taki, S De Bievre and G Dujardin, Phys. Rev. A 92, 043837 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    L Wang, J H Zhang, C Liu, M Li and F H Qi, Phys. Rev. E 93, 062217 (2016)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Y S Kivshar and G P Agrawal, Optical solitons: From fibers to photonic crystals (Academic Press, San Diego, 2003)Google Scholar
  17. 17.
    B Zhang, X L Zhang and C Q Dai, Nonlinear Dyn. 87, 2385 (2017)CrossRefGoogle Scholar
  18. 18.
    C Q Dai, G Q Zhou, R P Chen, X J Lai and J Zheng, Nonlinear Dyn. 88, 2629 (2017)CrossRefGoogle Scholar
  19. 19.
    N Akhmediev, A Ankiewicz and M Taki, Phys. Lett. A 373, 675 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    A Degasperis, M Conforti, F Baronio and S Wabnitz, Phys. Rev. Lett. 97, 093901 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    M Conforti, F Baronio, A Degasperis and S Wabnitz, Phys. Rev. E 74, 065602(R) (2006)ADSCrossRefGoogle Scholar
  22. 22.
    B L Guo and L M Ling, Chin. Phys. Lett. 28, 110202 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Y K Liu and B Li, Pramana – J. Phys. 88: 57 (2017)Google Scholar
  24. 24.
    S Chen, J M Soto-Crespo, F Baronio, P Grelu and D Mihalache, Opt. Express 24, 15251 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Z Wen and Z Yan, Chaos 27, 033118 (2017) J J Su and Y T Gao, Superlattice. Microstuct. 120, 697 (2018)Google Scholar
  26. 26.
    Y Y Wang, C Q Dai, Y Q Xu, J Zheng and Y Fan, Nonlinear Dyn. 92, 1261 (2018).CrossRefGoogle Scholar
  27. 27.
    M J Ablowitz and H Segur, Solitons and the inverse scattering transform (SIAM, Philadelphia, 1981)CrossRefGoogle Scholar
  28. 28.
    C Rogers and W F Shadwick, Bäcklund transformations and their application (Academic Press, New York, 1982)zbMATHGoogle Scholar
  29. 29.
    V A Matveev and M A Salle, Darboux transformation and solitons (Springer, Berlin, 1991)CrossRefGoogle Scholar
  30. 30.
    G P Agrawal, Nonlinear fiber optics (Academic Press, New York, 1995)zbMATHGoogle Scholar
  31. 31.
    S H Chen and L Y Song, Phys. Rev. E 87, 032910 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    F Baronio, M Conforti, A Degasperis and S Lombardo, Phys. Rev. Lett. 111, 114101 (2013) T T Jia, Y Z Chai and H Q Hao, Superlattice. Microstruct. 105, 172 (2017)Google Scholar
  33. 33.
    A Degasperis and S Lombardo, Phys. Rev. E 88, 052914 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    D Mogilevtsev, T A Birks and P S Russell, Opt. Lett. 23, 1662 (1998) X Y Gao, Appl. Math. Lett. 73, 143 (2017)Google Scholar
  35. 35.
    R H Stolen and C Lin, Phys. Rev. A 17, 1448 (1978) J J Su and Y T Gao, Eur. Phys. J. Plus 133, 96 (2018)Google Scholar
  36. 36.
    J W Liang, T Xu, M Y Tang and X D Liu, Nonlinear Anal. Real 14, 329 (2013)CrossRefGoogle Scholar
  37. 37.
    L Wang, L L Zhang, Y J Zhu, F H Qi, P Wang, R Guo and M Li, Commun. Nonlinear Sci. Numer. Simul. 40, 216 (2016)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    M S M Rajan, A Mahalingam and A Uthayakumar, Ann. Phys. 346, 1 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    J Chai, B Tian, Y F Wang, W R Sun and Y P Wang, Z. Naturforsch. A 71, 525 (2016)Google Scholar
  40. 40.
    A Degasperis and S Lombardo, J. Phys. A 40, 961 (2007)Google Scholar
  41. 41.
    O C Wright III, Chaos Solitons Fractals 33, 374 (2007)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    O C Wright III, Hirota equation, unstable plane waves and heteroclinic connections faculty summer grants (Cedarville University, Cedarville, OH, 2006)Google Scholar
  43. 43.
    V N Serkin and A Hasegawa, Phys. Rev. Lett. 85, 4502 (2000); IEEE J. Sel. Top. Quantum Electron. 8, 418 (2002)Google Scholar
  44. 44.
    B A Malomed, Soliton management in periodic systems (Springer, Berlin, 2006)zbMATHGoogle Scholar
  45. 45.
    C Q Dai, G Q Zhou and J F Zhang, Phys. Rev. E 85, 016603 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    V A Bogatyrev et al, J. Lightwave Technol. 9, 561 (1991)Google Scholar
  47. 47.
    R Y Hao, L Li, Z H Li and G S Zhou, Phys. Rev. E 70, 066603 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Information Photonics and Optical Communications, and School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations