Advertisement

Pramana

, 91:87 | Cite as

Shape, size and phonon scattering effect on the thermal conductivity of nanostructures

Article
  • 46 Downloads

Abstract

A phenomological model is described here to study the effect of size, shape and phonon scattering on the thermal conductivity of nanostructures. Using the classical model proposed by Guisbiers et al (Phys. Chem. Chem. Phys. 12, 7203 (2010), J. Phys. Chem. C 112, 4097 (2008)) in terms of the melting temperature of nanostructures, the expression for variation of thermal conductivity is obtained in terms of shape and size parameter. An additional term is included in the expression of thermal conductivity to consider the impact of phonon scattering due to the surface roughness with a decrease in size. The expression of thermal conductivity is obtained for spherical nanosolids, nanowires and nanofilms. The thermal conductivity is found to decrease in nanostructures in comparison with the counterpart bulk material. The values of thermal conductivity obtained from the present model are found to be close to the available experimental data for different values of roughness parameter which verifies the suitability of the model.

Keywords

Nanomaterials shape factor size effect roughness parameter thermal conductivity 

PACS Nos

65.80.+n 72.20.−i 

References

  1. 1.
    C Weisbuch and B Vinter, Quantum semiconductor structures (Academic Press, San Diego, CA, 1991)CrossRefGoogle Scholar
  2. 2.
    A Yariv, Quantum electronics, 3rd edn (Wiley, New York, 1989)Google Scholar
  3. 3.
    R J Moitsheki and C Harley, Pramana – J. Phys.  77, 519 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    T Yao, Appl. Phys. Lett.  51(22), 1798 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    W S Capinski and H J Maris, Physica B  219–220, 699 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    E Ziambaras and P Hyldgaard, J. Appl. Phys.  99, 054303 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    M Malligavathy, S Iyyapushpam, S T Nishanthi and D Pathinettam Paditan, Pramana – J. Phys.  90: 44 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    Y He and G Galli, Phys. Rev. Lett.  108, 215901 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    W Liu and M Asheghi, Appl. Phys. Lett.  84, 3819 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Z Wang and N Mingo, Appl. Phys. Lett.  97, 101903 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    C Q Sun, L K Pan, C M Li and S Li, Phys. Rev. B  72, 134301 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    A Malhotra and M Maldovan, J. Appl. Phys.  120, 204305 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    L H Liang and B Li, Phys. Rev. B  73, 153303 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    D G Cahill, P V Braun, G Chen, D R Clarke, S Fan, K E Goodson, P Keblinski, W P King, G D Mahan, A Majumdar, H J Maris, S R Phillpot, E Pop and L Shi, Appl. Phys. Rev.  1, 011305 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    G Guisbiers, Nanoscale Res. Lett.  5, 1132 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    G Guisbiers and L Buchaillot, Phys. Lett. A  374, 305 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    G Guisbiers, D Liu, Q Jiang and L Buchaillot, Phys. Chem. Chem. Phys.  12, 7203 (2010)CrossRefGoogle Scholar
  18. 18.
    G Guisbiers, M Kazan, O V Overschelde, M Wautelet and S Pereira, J. Phys. Chem. C  112, 4097 (2008)CrossRefGoogle Scholar
  19. 19.
    M Wautelet, Phys. Lett. A  246, 341 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    G Guisbiers and M José-Yacaman, Encyclopedia of interfacial chemistry: Surface science and electrochemistry, in: Reference module in chemistry, molecular sciences and chemical engineering (Elsevier, New York, 2018) pp. 875–885Google Scholar
  21. 21.
    J Ferrante, J H Rose and J R Smith, Appl. Phys. Lett.  44, 53 (1984)ADSCrossRefGoogle Scholar
  22. 22.
    F A Lindemann, Phys. Z.  11, 609 (1910)Google Scholar
  23. 23.
    J G Dash, Rev. Mod. Phys. 71, 1737 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    J M Zimann, Electrons and phonons (Clarendon Press, Oxford, 1960), pp. 288, 58, 296, 456Google Scholar
  25. 25.
    E J Post, Can. J. Chem.  31, 112 (1953)Google Scholar
  26. 26.
    A R Regal and V M Glazov, Semiconductors  29(5), 405 (1995)ADSGoogle Scholar
  27. 27.
    G Soyez, J A Eastman, L J Thompson, G R Bai, P M Baldo and A W McCormick, Appl. Phys. Lett.  77, 1155 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    J Lim, K Hippalgaonkar, S C Andrews, A Majumdar and P Yang, Nano Lett.  12, 2475 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    D Li, Y Wu, P Kim, L Shi, P Yang and A Majumdar, Appl. Phys. Lett.  83, 3186 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Y S Ju and K E Goodson, Appl. Phys. Lett.  74(20), 3005 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    W S Capinski, H J Maris, T Ruf, M Cardona, K Ploog and D S Katzer, Phys. Rev. B  59, 8105 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of PhysicsGLA UniversityMathuraIndia

Personalised recommendations