, 91:85 | Cite as

Simulation of the wave-absorbing model of a carbonyl iron / silver-coated core–shell structure

  • Xinhua Song
  • Honghao YanEmail author
  • Yang Wang
  • Zhengzheng Ma
  • Bing Xu


The microwave-absorbing performances of carbonyl iron powder / silver core–shell composite particles are studied on the basis of the electromagnetic scattering theory and the energy conservation law. In addition, a calculation method for reflection loss of the carbonyl iron powder / silver core–shell composite particles with microwave is proposed. The calculated reflection loss of the carbonyl iron powder / silver core–shell composite particles is compared with the experimental results. The findings show that the trend of reflection loss of the carbonyl iron powder / silver composite particles can be predicted which can subsequently provide a relevant reference for future experiment and calculation of the absorbing mechanism of electromagnetic wave-microscopic carbonyl iron powder / silver core–shell composite particles.


Carbonyl iron powder / silver nucleus wave loss magnetic permeability 


42.25.Bs 41.20.Jb 42.68.Ay 



This project was financially supported by the National Natural Science Foundation of China (Nos 10872044, 11672068 and 11672067) and the Fundamental Research Funds for Central Universities.


  1. 1.
    Z Han et al, Appl. Phys. Lett. 95, 023114 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    J J Schneider, Adv. Mater. 13(7), 529 (2001)CrossRefGoogle Scholar
  3. 3.
    A Ghosh, N Kumari and A Bhattacharjee, Pramana – J. Phys. 84(4), 621 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    H C Chen, J H Lin and K C Lee, J. Reinforced Plast. Compos. 27(2), 187 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    T Banerjee et al, Int. J. Adv. Manuf. Technol. 64(9–12), 1729 (2013)CrossRefGoogle Scholar
  6. 6.
    X G Cao, H Ren and H Y Zhang, J. Alloys Compd. 631, 133 (2015)CrossRefGoogle Scholar
  7. 7.
    Y-L Wang et al, Chem. J. Chin. Univ. 31(10), 1934 (2010) (in Chinese)Google Scholar
  8. 8.
    J-T Guan and H-X Zheng, Electrodynamics, 2nd edn (China University of Petroleum Press, Shandong, 2005) (in Chinese)Google Scholar
  9. 9.
    D K Cheng, Field and wave electromagnetics (Addison Wesley, New Jersey, 1983)Google Scholar
  10. 10.
    S-H Guo, Electrodynamics, 3rd edn (Higher Education Press, Beijing, 2008) (in Chinese)Google Scholar
  11. 11.
    Z-M Qu et al, Mater. Sci. Technol. 20(3), 36 (2012) (in Chinese)Google Scholar
  12. 12.
    K-S Chen, Application of electromagnetism (Zhejiang University Press, Zhejiang, 2008) (in Chinese)Google Scholar
  13. 13.
    S-H Liu, Electromagnetic wave shielding and absorbing materials (Chemical Industry Press, Beijing, 2014) (in Chinese)Google Scholar
  14. 14.
    Y-G Hu, Electrodynamics preliminary (Shanghai Education Press, Shangai, 1982) (in Chinese)Google Scholar
  15. 15.
    X Y Fang et al, J. Appl. Phys. 107(5), 054304 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    R Lu et al, Chin. Phys. Lett. 26(4), 044101 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    H-W Ma et al, Electromagnetic field theory (Beijing University of Posts and Telecommunications Press, Beijing, 2006) (in Chinese)Google Scholar
  18. 18.
    L-Q Xu and W Cao, Electromagnetic field and electromagnetic wave theory (Science Press, Beijing, 2010) (in Chinese)Google Scholar
  19. 19.
    B-X Liang, General physics (electromagnetics part) (Science Press, Beijing, 1983 (in Chinese)Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Xinhua Song
    • 1
  • Honghao Yan
    • 1
    Email author
  • Yang Wang
    • 1
  • Zhengzheng Ma
    • 2
  • Bing Xu
    • 2
  1. 1.State Key Laboratory of Structural Analysis for Industrial EquipmentDalian University of TechnologyLiaoningChina
  2. 2.National Key Laboratory of Electromagnetic EnvironmentChina Research Institute of Radiowave PropagationQingdaoChina

Personalised recommendations