Advertisement

Pramana

, 91:65 | Cite as

Performance improvement of organic light emitting diode using 4,4\(^{\prime }\)-N,N\(^{\prime }\)-dicarbazole-biphenyl (CBP) layer over fluorine-doped tin oxide (FTO) surface with doped light emitting region

  • Dhrubajyoti Saikia
  • Ranjit Sarma
Article
  • 9 Downloads

Abstract

In this study, high performance of organic light emitting diodes (OLEDs) with a buffer layer of dicarbazole-biphenyl (CBP) film is demonstrated. With an optimal thickness of CBP (12 nm), the luminance efficiency of OLED is found to increase compared to the single-layer anode OLED. To study the performance of OLED using the buffer layer, we deposited CBP films of different thicknesses on the fluorine-doped tin oxide (FTO) surface and observed their JV and LV characteristics. Further analysis was carried out by making the host–guest combination within the light emitting region using iridium (III) complexes \((\hbox {Ir}(\hbox {ppy})_{3})\) as the dopant material to enhance the efficiency of the device. We also measure the sheet resistance, optical transmittance and surface morphology of both the single and bilayer electrode surfaces using the FE-SEM images. Here the maximum value of current efficiency is found to be 12.45 cd / A under optimised doped and quantum tunnelling conditions.

Keywords

Hole injection layer organic light emitting diode surface resistance optical transmittance current efficiency 

PACS Nos

68.35.Ct 68.65.Ac 68.47.Fg 

References

  1. 1.
    I D Parker, J. Appl. Phys. 75, 1656 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    H M Lee, K H Choi, D H Hwang, L M Do, T Zyung, J W Lee and J K Park, Appl. Phys. Lett. 72, 2382 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    L Zhou, J Y Zhuang, S Tongay, W M Su and Z Cui, J. Appl. Phys. 114, 074506 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    H Mu, W Li, R Jones, A Steckl and D Klotzkin, J. Lumin. 126, 225 (2007)CrossRefGoogle Scholar
  5. 5.
    H Meng, Y Dai, Y Ye, J X Luo, Z J Shi, L Dai and G G Qin, J. Phys. D: Appl. Phys. 45, 245103 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Daeil Kim, Trans. Electr. Electron. Mater. 14, 242 (2013)CrossRefGoogle Scholar
  7. 7.
    Chien-Jung Huang, Kan-Lin Chen, Po-Wen Sze, Wen-Ray Chen, Teen-Hang Meen and Shi-Lun Wu, Int. J. Photoenergy 4, 437304 (2013)Google Scholar
  8. 8.
    W P Hu, K Manabe, T Furukawa and M Matsumuda, Appl. Phys. Lett. 80, 2640 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    D Kabra, L P Lu, M H Song, H J Snaith and R H Friend, Adv. Mater. 22, 3194 (2010)CrossRefGoogle Scholar
  10. 10.
    M Vasilopoulou, L C Palilis, D G Georgiadou, S Kennou, I Kostis, D Davazoglou and P Argitis, Appl. Phys. Lett. 100, 013311 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    I Hong, M W Lee, Y M Koo, H Jeong, T S Kim and O K Song, Appl. Phys. Lett. 87, 063502 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    T Y Kim, M Suh, S J Kwon, T H Lee, J E Kim, Y J Lee, J H Kim, M P Hong and K S Suh, Macromol. Rapid Commu. 30, 1477 (2009)CrossRefGoogle Scholar
  13. 13.
    T Mori, H Fujikawa, S Tokito and Y Taga, Appl. Phys. Lett. 73, 2763 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    S T Zhang, Y C Zhou, J M Zhou, Y Q Zhan and Z J Wang, Appl. Phys. Lett. 89, 043502 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    E L Bruner, N Koch, A R Span, S L Bernasek, A Kahn and J Schwartz, J. Amer. Chem. Soc. 13, 124 (2002)Google Scholar
  16. 16.
    X L Zhou, J X Sun, H J Peng, Z G Mang and M Wong, Appl. Phys. Lett. 15, 87 (2005)CrossRefGoogle Scholar
  17. 17.
    S T Zhang, X M Ding, J M Zhao, H Z Shi, J He, Z H Xiong, H J Ding, E G Obbard, Y Q Zhan, W Huang and X Y Hou, Appl. Phys. Lett. 84, 425 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    H T Lu and M Yokoyama, Solid State Electron. 47, 1409 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    B Delgertsetseg, N Javkhlantugs, E Enkhtur, Y Yokokura, T Ooba, K Ueda, C Ganzorig and M Sakomura, Rev. Téc. Ing. Univ. 37, 35 (2014)Google Scholar
  20. 20.
    M Vasilopoulou, G Papadimitropoulos, L C Palilis, D G Georgiadou, P Argitis, S Kennou, I Kostis, N Vourdas, N A Stathopoulos and D Davazoglou, Org. Electron. 13, 796 (2012)CrossRefGoogle Scholar
  21. 21.
    J Li, M Yahiro, K Ishida, H Yamada and K Matsushige, Syn. Met. 151, 141 (2005)CrossRefGoogle Scholar
  22. 22.
    E F Gomez and A J Steckl, ACS Photon. 2, 439 (2015)CrossRefGoogle Scholar
  23. 23.
    A Uniyal and P Mittal, J. Graphic Era Uni. 4, 32 (2016)Google Scholar
  24. 24.
    Yu-Long Wang, Jia-Ju Xu, Yi-Wei Lin, Qian Chen and Hai-Quan Shan, AIP Adv. 5, 107205 (2015)Google Scholar
  25. 25.
    Y Xu et al, Nanoscale Res. Lett. 12, 254 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    M Shan, H Jiang, Y Guan, D Sun, Y Wang, J Hua and J Wan, RSC Adv. 7, 13584 (2017)CrossRefGoogle Scholar
  27. 27.
    Vineeth Michael, Fabrication of OLED on FTO and ITO coated substrates, Ph.D. thesis 1, P11287888 (2012)Google Scholar
  28. 28.
    A R Schlatmann, D W Floet, A Hilberer, F Garten, P J M Smulders and T M Klapwijk, Appl. Phys. Lett. 69, 1764 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    A Andersson, N Johansson, P Broms, N Y D Lupo and W R Salaneck, Adv. Mater. 11, 859 (1998)CrossRefGoogle Scholar
  30. 30.
    A K Havare, M Can, S Demic, S Okur, M Kus, H Aydın, N Yagmurcukardes and S Ta, Synth. Met. 161, 2397 (2011)CrossRefGoogle Scholar
  31. 31.
    R V Adriano, P M Benvenho Jose, Serbena Rudolf Lessmann and Ivo A Hummelgen, Braz. J. Phys. 35, 1069 (2005)Google Scholar
  32. 32.
    F Zhang, Z Xu, S Zhao, D Zhao, G Yuan and Z Cheng, Appl. Surf. Sci. 255, 1942 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    T Borthakur and R Sarma, Appl. Phys. A 123, 207 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    J S Park, W S Jeon, J H Yu, R Pode and J H Kwon, Thin Solid Films 519(10), 3259 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    W S Jeon, T J Park, S Y Kim, R Pode, J Jang and J H Kwon, Org. Electron. 10(2), 240 (2009)CrossRefGoogle Scholar
  36. 36.
    R C Kwong et al, Appl. Phys. Lett. 81(1), 162 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    K Yoshino, Y Shimoda, Y Kawagishi, K Nakayama and M Ozaki, Appl. Phys. Lett. 75, 932 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    M M da Silva, A R Vaz, S A Moshkalev and J W Swart, ECS Trans. 9, 235 (2007)CrossRefGoogle Scholar
  39. 39.
    Z B Deng, X M Ding, L S Liao, X Y Hou and S T Lee, Display 21, 323 (2000)CrossRefGoogle Scholar
  40. 40.
    Z B Deng, X M Ding and S T Lee, Appl. Phys. Lett. 74, 2227 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    J S Park, W S Jeon, J H Yu, R Pode and J H Kwon, Thin Solid Films 519(10), 3259 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    W S Jeon, T J Park, S Y Kim, R Pode, J Jang and J H Kwon, Organic Electronics 10(2), 240 (2009)CrossRefGoogle Scholar
  43. 43.
    B D Chin, M C Suh, M H Kim, S T Lee, H D Kim and H K Chung, Appl. Phys. Lett. 86, 133505 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    Y Kawamura, S Yanagida and S R Forrest, J. Appl. Phys. 92, 87 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    A Tsuboyama et al, J. Am. Chem. Soc. 125(42), 12971 (2003)CrossRefGoogle Scholar
  46. 46.
    D Saikia and R Sarma, Pramana – J. Phys. 88: 83 (2017).ADSCrossRefGoogle Scholar
  47. 47.
    H H Kim, E H Westerwick, Y O Kim, M D Morris, M Cerullo, T M Miller and E W Kwock, J. Light. Technol. 12, 2107 (1994)ADSCrossRefGoogle Scholar
  48. 48.
    S T Zhang, X M Ding, J M Zhao, H Z Shi, J He, Z H Xiong and H J Ding, Appl. Phys. Lett. 84, 3 (2004)Google Scholar
  49. 49.
    X Zhou, J He, L S Liao, M Lu, Z H Xiong, X M Ding and X Y Hou, Appl. Phys. Lett. 74, 4 (1999)CrossRefGoogle Scholar
  50. 50.
    S H Jeong, S B Lee and J H Boo, Curr. Appl. Phys. 4, 655 (2004)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Thin Film Lab, Department of PhysicsJ.B. CollegeTarajan, JorhatIndia

Personalised recommendations