, 91:47 | Cite as

Temperature and concentration gradient effects on heat and mass transfer in micropolar fluid

  • Sanna Iram
  • Muhammad NawazEmail author
  • Asad Ali


This study investigates the temperature and concentration gradients on the transfer of heat and mass in the presence of Joule heating, viscous dissipation and time-dependent first-order chemical reaction in the flow of micropolar fluid. Governing boundary value problems are solved analytically and the effects of parameters involved are studied. The behaviour of the Nusselt number (at both disks) is noted and recorded in a tabular form. The present results have an excellent agreement with the already published results for a special case. The rate of transport of heat by concentration gradient and the diffusion of solute molecules by temperature gradient are increased. The concentration field is increased by constructive chemical reaction and it decreases when the rate of destructive chemical reaction is increased.


Heat and mass transfer temperature and concentration gradients Nusselt number and Sherwood number 


44.05.e 47.35.Pq 81.40.Gh 


  1. 1.
    N Mujakovic and N C Zic, Math. Anal. Appl. J. 449(2), 1637 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    A M Sheremet, I Pop and A Ishak, Int. Heat Mass Transfer J. 105, 610 (2017)CrossRefGoogle Scholar
  3. 3.
    M Turkyilmazoglu, Int. Nonlinear Mech. J. 83, 59 (2016)CrossRefGoogle Scholar
  4. 4.
    M Ramzan, M Farooq, T Hayat and J D Chung, Mol. Liq. J. 221, 394 (2016)CrossRefGoogle Scholar
  5. 5.
    A Borrelli, G Giantesio and M C Patria, Commun. Nonlinear Sci. Numer. Simul. 20(1), 121 (2015)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    P V Satya Narayana, B Venkateswarlu and S Venkataramana, Ain Shams Eng. J. 4(4), 843 (2013)CrossRefGoogle Scholar
  7. 7.
    H S Takhar, R Bhargava, R S Agrawal and A V S Balaji, Int. Eng. Sci. J. 38(17), 1907 (2000)CrossRefGoogle Scholar
  8. 8.
    D C Kuzma, Appl. Sci. Res. 18(1), 15 (1968)CrossRefGoogle Scholar
  9. 9.
    Z W S Ishizawa and K Takahashi, Trans. Jpn. Soc. Mech. Eng. B 55(517), 2559 (1989)CrossRefGoogle Scholar
  10. 10.
    S Ishizawa, T Watanabe and K Takahashi, Fluids Eng. J. 109(4), 394 (1987)CrossRefGoogle Scholar
  11. 11.
    E A Hamza, Tribol. J. 110(2), 375 (1988)CrossRefGoogle Scholar
  12. 12.
    R Usha and R Sridharan, Fluid Dyn. Res. 18(1), 35 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    B Debaut, Non-Newton. Fluid Mech. J. 98(1), 15 (2001)CrossRefGoogle Scholar
  14. 14.
    A R A Khaled and K Vafai, Int. Eng. Sci. J. 42(5–6), 509 (2004)CrossRefGoogle Scholar
  15. 15.
    H M Duwairi, B Tashtoush and R A Damseh, Heat Mass Transfer 41(2), 112 (2004)ADSGoogle Scholar
  16. 16.
    M Mahmood, S Asghar and M A Hossain, Heat Mass Transfer 44(2), 165 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    M M Rashidi, H Shahmohamadi and S Dinarvand, Math. Probl. Eng. 2, 935 (2008)Google Scholar
  18. 18.
    G Domairy and A Aziz, Math. Probl. Eng. 603 (2009)Google Scholar
  19. 19.
    T Hayat, M Nawaz, A A Hendi and S Asghar, Fluids Eng. J. 133(11), 111206 (2011)CrossRefGoogle Scholar
  20. 20.
    T Hayat, A Yousaf, M Mustaf and S Obaidat, Int. Numer. Meth. Fluids J. 69(2), 399 (2012)CrossRefGoogle Scholar
  21. 21.
    A Qayyum, M Awais, A Alsaedi and T Hayat, Chin. Phys. Lett. 29(3), 034701 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    B Tashtoush, M Tahat and S D Probert, Appl. Energy 68(3), 275 (2001)CrossRefGoogle Scholar
  23. 23.
    A R Bahadir and T Abbasov, Ind. Lubr. Tribol. 63(2), 63 (2011)CrossRefGoogle Scholar
  24. 24.
    D Srinivasacharya, B Mallikarjuna and R Bhuvanavijaya, Ain Shams Eng. J. 6(2), 553 (2015)CrossRefGoogle Scholar
  25. 25.
    E Osalusi, J Slide and R Harris, Int. Commun. Heat Mass Transfer J. 35(8), 908 (2008)CrossRefGoogle Scholar
  26. 26.
    R A Hamid, W M K A Wan Zaimi, N M Arifin, N A A Bakar and B Bidin, Appl. Math. J. 750939 (2012)Google Scholar
  27. 27.
    O A Beg, A Y Bakier and V R Prasad, Comput. Mater. Sci. 46(1), 57 (2009)CrossRefGoogle Scholar
  28. 28.
    O Prakash, D Kumar and Y K Dwivedi, Electrom. Anal. Appl. J. 2(10), 581 (2010)Google Scholar
  29. 29.
    R Tsai and J S Huang, Int. Heat Mass Transfer J. 52(9–10), 2399 (2009)CrossRefGoogle Scholar
  30. 30.
    A A Afify, Commun. Nonlinear Sci. Numer. Simul. 14(5), 2202 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    M Awais, T Hayat, M Nawaz and A Alsaedi, Braz. Chem. Eng. J. 32(2), 555 (2015)CrossRefGoogle Scholar
  32. 32.
    T Hayat and M Nawaz, Int. J. Numer. Methods Fluids 67(9), 1073 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    A R Seadawy and K El-Rashidy, Pramana – J. Phys. 87: 20 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    T Hayat, M Waqas, S A Shehzad and A Alsaed, Pramana – J. Phys. 86(1), 3 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    H Mirgolbabaee, S T Ledari, D D Ganji, J. Assoc. Arab Univ. Basic Appl. Sci. 24, 213 (2017)Google Scholar
  36. 36.
    M Turkyilmazoglu, Int. Heat Mass Transfer J. 72, 388 (2014)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Applied Mathematics and StatisticsInstitute of Space TechnologyIslamabadPakistan
  2. 2.Department of Space ScienceInstitute of Space TechnologyIslamabadPakistan

Personalised recommendations