, 91:28 | Cite as

Modified extended exp-function method for a system of nonlinear partial differential equations defined by seismic sea waves

  • Muhammad Shakeel
  • Syed Tauseef Mohyud-DinEmail author
  • Muhammad Asad Iqbal


Nonlinear partial differential equations are the main area of focus for researchers and scientists doing research in applied mathematics. Finding solutions of these nonlinear partial differential equations had gained considerable importance over the last few decades. In this work, an analytical technique named extended exp-function method is introduced for finding archetype exact solutions of innovative nonlinear coupled Konno–Oono equation. Different types of travelling wave solutions, i.e. complex hyperbolic function and complex trigonometric function solutions, with numerous capricious parameters are revealed. Subsequently, by using Maple 16, we plot 2D and 3D surfaces of analytical solutions obtained in this article. The depiction of the technique is straight, useful and can be applied to other nonlinear systems of partial differential equations.


Coupled Konno–Oono equation extended exp-function method complex hyperbolic solution homogeneous balancing principle 


02.70.Wz 05.45.Yv 03.65.Ge 


  1. 1.
    K Chunga and T Toulkeridis, J. Tsunami Soc. Int. 33, 55 (2014)Google Scholar
  2. 2.
    E Yusufoğlu, Phys. Lett. A 372, 442 (2008)CrossRefADSGoogle Scholar
  3. 3.
    E M E Zayed and S Al-Joudi, Math. Probl. Eng. 2010, 19 (2010), CrossRefGoogle Scholar
  4. 4.
    H Jafari, H Tajadodi and D Baleanu, J. Comput. Nonlinear Dyn. 9(2), 021019 (2014), CrossRefGoogle Scholar
  5. 5.
    B Zheng, Sci. World J.  2013, (2013), Article ID 465723,
  6. 6.
    J H He and X H Wu, Chaos Solitons Fractals 30, 700 (2006)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    X H Wu and J H He, Comput. Math. Appl. 54, 966 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    F Özpinar, H M Baskonus and H Bulut, Entropy 17, 8267 (2015), CrossRefADSGoogle Scholar
  9. 9.
    H O Roshid and M A Rahman, Results Phys. 4, 150 (2014)CrossRefGoogle Scholar
  10. 10.
    M G Hafez, M N Alam and M A Akbar, World Appl. Sci. J. 32(10), 2150 (2014), Google Scholar
  11. 11.
    M Shakeel, Q M Ul-Hassan, J Ahmad and S T Mohyud-Din, Adv. Math. Phys. 2014, (2014), Article ID 181594Google Scholar
  12. 12.
    K Khan and M A Akbar, Math. Phys. 2013, (2013), Article ID 685736Google Scholar
  13. 13.
    L Guan, X Geng and Z Li, R. Swed. Acad. Sci. 89(7), 075210 (2014)Google Scholar
  14. 14.
    M E Sabbagh, A Shehata and A Saleh, Int. J. Pure Appl. Math. 101(2), 171 (2015)Google Scholar
  15. 15.
    A Ali, M A Iqbal and S T Mohyud-Din, Pramana–J. Phys. 87: 79 (2016), CrossRefADSGoogle Scholar
  16. 16.
    K Ayub, M Y Khan, Q M-Hassan and J Ahmad, Pramana – J. Phys. 89: 45 (2017), CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Muhammad Shakeel
    • 1
  • Syed Tauseef Mohyud-Din
    • 2
    Email author
  • Muhammad Asad Iqbal
    • 3
  1. 1.Department of MathematicsMohi-Ud-Din Islamic UniversityNerian SharifPakistan
  2. 2.Faculty of SciencesHITEC UniversityTaxilaPakistan
  3. 3.Department of Mathematics, Faculty of Basic and Applied SciencesThe University of PoonchRawalakotPakistan

Personalised recommendations