Advertisement

Tropical Plant Biology

, Volume 13, Issue 1, pp 13–22 | Cite as

Genome-Wide Identification, Characterization of RDR Genes and their Expression Analysis during Reproductive Development and Stress in Pineapple

  • Zhenfang Li
  • Dingning Li
  • Baiyang Li
  • Yanhui Liu
  • Xiaoping Niu
  • Mohammad Aslam
  • Hanyang Cai
  • Zhenxia SuEmail author
  • Yuan QinEmail author
Article
  • 98 Downloads

Abstract

RNA-dependent RNA polymerases (RDRs), involved in the production of various small interfering RNA (siRNA), play critical roles in plant growth, development process, and abiotic/biotic stresses. In this study, 5 RDR genes (AcRDRs) were identified from the pineapple genome. Phylogenetic analysis showed that AcRDRs could be divided into 4 subgroups. Gene structure analysis showed that the number of introns varied from 2 to 18. Furthermore, we analyzed AcRDR expression patterns in vegetative organs and in sexual organs, namely ovules and stamens, at different developmental stages respectively. AcRDR2, AcRDR3 and AcRDR6b showed higher expressions in the male and female reproductive organs, while AcRDR3 also was accumulated highly in sepal and fruit. AcRDR6a exhibited the highest expression levels at the mature ovule and stamen. AcRDR1 had an expression peak in the root. Furthermore, we checked the responses of AcRDRs to abiotic stresses and phytohormones. The results of this study provided basic genomic information for AcRDRs and insights into the probable roles of these genes in plant growth and development.

Keywords

RNA-dependent RNA polymerases Pineapple Phylogenetic analysis Expression profiles Abiotic stresses 

Notes

Acknowledgements

We would like to thank the reviewers for their helpful comments on the original manuscript.

Author Contributions

Z.L designed the study and performed the experiments. D.L. and B.L performed the RT-PCR analysis. Z.X and Y.L performed the bioinformatics analysis on the gene family. X.N and H.C collected the samples. M.S. revised the manuscript. Y.Q. and Z.S conceived the study and wrote the manuscript.

Funding Information

This work was supported by the National Nature Science Foundation of China (U1605212; 31700278) and a Newton Advanced Fellowship to Y.Q.

Supplementary material

12042_2019_9241_MOESM1_ESM.xlsx (16 kb)
ESM 1 (XLSX 16 kb)
12042_2019_9241_MOESM2_ESM.xlsx (14 kb)
ESM 2 (XLSX 13.6 kb)
12042_2019_9241_MOESM3_ESM.xlsx (10 kb)
ESM 3 (XLSX 10.1 kb)

References

  1. Autran D, Baroux C, Raissig MT, Lenormand T, Wittig M, Grob S, Steimer A, Barann M, Klostermeier UC, Leblanc O, Vielle-Calzada JP, Rosenstiel P, Grimanelli D, Grossniklaus U (2011) Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell 145(5):707–719.  https://doi.org/10.1016/j.cell.2011.04.014 CrossRefGoogle Scholar
  2. Bai M, Yang GS, Chen WT, Mao ZC, Kang HX, Chen GH, Yang YH, Xie BY (2012) Genome-wide identification of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analyses in response to viral infection and abiotic stresses in Solanum lycopersicum. Gene 501(1):52–62.  https://doi.org/10.1016/j.gene.2012.02.009 CrossRefGoogle Scholar
  3. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301(5631):336–338.  https://doi.org/10.1126/science.1085242 CrossRefGoogle Scholar
  4. Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101(5):543–553CrossRefGoogle Scholar
  5. Diaz-Pendon JA, Li F, Li WX, Ding SW (2007) Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell 19(6):2053–2063.  https://doi.org/10.1105/tpc.106.047449 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Djupedal I, Ekwall K (2009) Epigenetics: heterochromatin meets RNAi. Cell Res 19(3):282–295.  https://doi.org/10.1038/cr.2009.13 CrossRefGoogle Scholar
  7. Dorweiler JE, Carey CC, Kubo KM, Hollick JB, Kermicle JL, Chandler VL (2000) Mediator of paramutation1 is required for establishment and maintenance of paramutation at multiple maize loci. Plant Cell 12(11):2101–2118.  https://doi.org/10.1105/tpc.12.11.2101 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Eddy SR, Pearson WR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195CrossRefPubMedGoogle Scholar
  9. Gan DF, Zhan MD, Yang F, Zhang QQ, Hu KL, Xu WJ, Lu QH, Zhang L, Liang DD (2017) Expression analysis of argonaute, Dicer-like, and RNA-dependent RNA polymerase genes in cucumber (Cucumis sativus L.) in response to abiotic stress. J Genet 96(2):235–249.  https://doi.org/10.1007/s12041-017-0758-y CrossRefPubMedGoogle Scholar
  10. Johnston M, Hutvagner G (2011) Posttranslational modification of Argonautes and their role in small RNA-mediated gene regulation. Silence 2:5.  https://doi.org/10.1186/1758-907X-2-5 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Jovel J, Walker M, Sanfacon H (2007) Recovery of Nicotiana benthamiana plants from a necrotic response induced by a nepovirus is associated with RNA silencing but not with reduced virus titer. J Virol 81(22):12285–12297.  https://doi.org/10.1128/JVI.01192-07 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Kapoor M, Arora R, Lama T, Nijhawan A, Khurana JP, Tyagi AK, Kapoor S (2008) Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics 9:451.  https://doi.org/10.1186/1471-2164-9-451 CrossRefPubMedCentralPubMedGoogle Scholar
  13. Liu C, Xie T, Chen C, Luan A, Long J, Li C, Ding Y, He Y (2017) Genome-wide organization and expression profiling of the R2R3-MYB transcription factor family in pineapple (Ananas comosus). BMC Genomics 18(1):503.  https://doi.org/10.1186/s12864-017-3896-y CrossRefPubMedCentralPubMedGoogle Scholar
  14. Makeyev EV, Bamford DH (2002) Cellular RNA-dependent RNA polymerase involved posttranscriptional gene silencing has two distinct activity modes. Mol Cell 10(6):1417–1427.  https://doi.org/10.1016/S1097-2765(02)00780-3 CrossRefGoogle Scholar
  15. Ming R et al (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47(12):1435–1442. https://doi.org/10.1038/ng.3435CrossRefPubMedCentralPubMedGoogle Scholar
  16. Moissiard G, Parizotto EA, Himber C, Voinnet O (2007) Transitivity in Arabidopsis can be primed, requires the redundant action of the antiviral Dicer-like 4 and Dicer-like 2, and is compromised by viral-encoded suppressor proteins. Rna 13(8):1268–1278.  https://doi.org/10.1261/rna.541307 CrossRefPubMedCentralPubMedGoogle Scholar
  17. Mourrain P, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N, Remoue K, Sanial M, Vo TA, Vaucheret H (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101(5):533–542CrossRefGoogle Scholar
  18. Nagasaki H, Itoh JI, Hayashi K, Hibara KI, Satoh-Nagasawa N, Nosaka M, Mukouhata M, Ashikari M, Kitano H, Matsuoka M, Nagato Y, Sato Y (2007) The small interfering RNA production pathway is required for shoot meristern initiation in rice. P Natl Acad Sci USA 104(37):14867–14871.  https://doi.org/10.1073/pnas.0704339104 CrossRefGoogle Scholar
  19. Olmedo-Monfil V, Duran-Figueroa N, Arteaga-Vazquez M, Demesa-Arevalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464(7288):628–632.  https://doi.org/10.1038/nature08828 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Qi XP, Bao FS, Xie ZX (2009) Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS One 4(3): e4971.  https://doi.org/10.1371/journal.pone.0004971 CrossRefPubMedGoogle Scholar
  21. Qian Y, Cheng Y, Cheng X, Jiang H, Zhu S, Cheng B (2011) Identification and characterization of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families in maize. Plant Cell Rep 30(7):1347–1363.  https://doi.org/10.1007/s00299-011-1046-6 CrossRefGoogle Scholar
  22. Qin L, Mo N, Muhammad T, Liang Y (2018) Genome-wide analysis of DCL, AGO, and RDR gene families in pepper (Capsicum Annuum L.). Int J Mol Sci 19(4):1038.  https://doi.org/10.3390/ijms19041038
  23. Shiu PK, Raju NB, Zickler D, Metzenberg RL (2001) Meiotic silencing by unpaired DNA. Cell 107(7):905–916CrossRefPubMedGoogle Scholar
  24. Su Z, Zhao L, Zhao Y, Li S, Won S, Cai H, Wang L, Li Z, Chen P, Qin Y, Chen X (2017a) The THO complex non-cell-autonomously represses female germline specification through the TAS3-ARF3 module. Curr Biol 27(11):1597–1609 e1592.  https://doi.org/10.1016/j.cub.2017.05.021 CrossRefPubMedCentralPubMedGoogle Scholar
  25. Su ZX, Wang LL, Li WM, Zhao LH, Huang XY, Azam SM, Qin Y (2017b) Genome-wide identification of Auxin Response Factor (ARF) genes family and its tissue-specific prominent expression in pineapple (Ananas comosus). Trop Plant Biol 10(2–3):86–96.  https://doi.org/10.1007/s12042-017-9187-6 CrossRefGoogle Scholar
  26. Voinnet O (2008) Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci 13(7):317–328.  https://doi.org/10.1016/j.tplants.2008.05.004 CrossRefGoogle Scholar
  27. Voinnet O (2009) Origin, biogenesis, and activity of plant MicroRNAs. Cell 136(4):669–687.  https://doi.org/10.1016/j.cell.2009.01.046 CrossRefGoogle Scholar
  28. Vrbsky J, Akimcheva S, Watson JM, Turner TL, Daxinger L, Vyskot B, Aufsatz W, Riha K (2010) siRNA-Mediated Methylation of ArabidopsisTelomeres. Plos Genet 6 (6):e1000986.  https://doi.org/10.1371/journal.pgen.1000986 CrossRefPubMedGoogle Scholar
  29. Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T, Nakano T, Surani MA, Sakaki Y, Sasaki H (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453(7194):539–543.  https://doi.org/10.1038/nature06908 CrossRefPubMedGoogle Scholar
  30. Willems E, Leyns L, Vandesompele J (2008) Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem 379:127–129CrossRefGoogle Scholar
  31. Willmann MR, Endres MW, Cook RT, Gregory BD (2011) The functions of RNA-dependent RNA polymerases in Arabidopsis. Arabidopsis Book 9:e0146.  https://doi.org/10.1199/tab.0146 CrossRefPubMedCentralPubMedGoogle Scholar
  32. Xie Z, Fan B, Chen C, Chen Z (2001) An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc Natl Acad Sci U S A 98(11):6516–6521.  https://doi.org/10.1073/pnas.111440998 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Yu D, Fan B, MacFarlane SA, Chen Z (2003) Analysis of the involvement of an inducible Arabidopsis RNA-dependent RNA polymerase in antiviral defense. Mol Plant-Microbe Interact 16(3):206–216.  https://doi.org/10.1094/MPMI.2003.16.3.206 CrossRefGoogle Scholar
  34. Zong J, Yao X, Yin J, Zhang D, Ma H (2009) Evolution of the RNA-dependent RNA polymerase (RdRP) genes: duplications and possible losses before and after the divergence of major eukaryotic groups. Gene 447(1):29–39.  https://doi.org/10.1016/j.gene.2009.07.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zhenfang Li
    • 1
  • Dingning Li
    • 2
  • Baiyang Li
    • 3
  • Yanhui Liu
    • 4
  • Xiaoping Niu
    • 3
  • Mohammad Aslam
    • 5
  • Hanyang Cai
    • 5
  • Zhenxia Su
    • 1
    • 5
    Email author
  • Yuan Qin
    • 1
    • 5
    Email author
  1. 1.Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.College of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
  3. 3.College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
  4. 4.College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
  5. 5.Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina

Personalised recommendations