Advertisement

Tropical Plant Biology

, Volume 11, Issue 1–2, pp 17–30 | Cite as

Development of Transgenic Sugarcane Resistant to Sugarcane Borer

  • Plinio T. Cristofoletti
  • Edson L. Kemper
  • Adriana N. Capella
  • Sandra R. Carmago
  • Juliana L. Cazoto
  • Fernanda Ferrari
  • Tederson L. Galvan
  • Luciane Gauer
  • Gustavo A. Monge
  • Marcelo A. Nishikawa
  • Nicolas Z. Santos
  • Altair A. Semeao
  • Leandro Silva
  • Alan R. Willse
  • Almir Zanca
  • Michael D. Edgerton
Article

Abstract

Sugarcane borer (Diatraea saccharalis) is a major pest of sugarcane (Saccharum spp. hybrids), across the Americas. The insect is partially controlled by biological and chemical means, but still causes significant economic losses to sugarcane growers and processors. Proteins derived from Bacillus thuringiensis, Bt proteins, have been used to control sugarcane borer in maize (Zea mays) for the past decade. In sugarcane, the expression of individual Bt proteins has been reported several times. However practical use of Bt proteins requires their use as part of an Integrated Pest Management (IPM) system that includes the delivery of high doses of protein and the use of a refuge to slow the evolution of insect resistance to the protein. Here we demonstrate the feasibility of using Bt proteins to protect sugarcane from sugarcane borer in a commercial setting. We have expressed two Bt proteins with differing modes of action (Cry1Ab and Cry2Ab) in commercial sugarcane varieties, demonstrated efficacy against sugarcane borer in the field and describe a strategy for trait deployment in this tropical crop with complex genetics that limits trait introgression by backcrossing.

Keywords

Sugarcane Sugarcane borer Diatraea saccharalis Cry1Ab Cry2Ab 

Abbreviations

Bt

Bacillus thuringiensis

IPM

Integrated Pest Management

I.I.%

Infestation Intensity

TSR

Total Sugars Recovered

EPSPS

5-enolpyruvylshikimate-3-phosphate synthase

TCH

Tons of sugarcane per hectare

Pol

Polarizing sugars

MIC

Molting Inhibitory Concentration

SCB

Sugarcane borer

Notes

Acknowledgements

We would like to thank Mike Butterfield for his assistance with statistical analysis of data from field experiments and Agustina Gentile for her assistance with the creation and analysis of transgenic plants in the laboratory.

References

  1. Abbott EV (1938) Red rot of sugarcane. US Dept of Agriculture Technical Bulletin 641Google Scholar
  2. Arvinth S, Arun S, Selvakesavan R, Srikanth J, Mukunthan N, Kumar PA, Premachandran M, Subramonian N (2010) Genetic transformation and pyramiding of aprotinin-expressing sugarcane with cry1Ab for shoot borer (Chilo infuscatellus) resistance. Plant Cell Rep 29:383–395CrossRefPubMedGoogle Scholar
  3. Berding N, Brotherton G, Le Brocq D, Skinner J (1991) Near infrared reflectance spectroscopy for analysis of sugarcane from clonal evaluation trials: I. Fibrated cane. Crop Sci 31:1017–1023CrossRefGoogle Scholar
  4. Bernardi O, Amado D, Sousa RS, Segatti F, Fatoretto J, Burd AD, Omoto C (2014) Baseline Susceptibility and Monitoring of Brazilian Populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) and Diatraea saccharalis (Lepidoptera: Crambidae) to Vip3Aa20 Insecticidal Protein. J Econ Entomol 107:781–790CrossRefPubMedGoogle Scholar
  5. Botelho P, Macedo N (2002) Cotesia flavipes para o controle de Diatraea saccharalis. In: Parra JRP (ed) Controle Biológico no Brasil: Parasitóides e Predadores. Manole, BarueriGoogle Scholar
  6. Box HE (1931) The crambine genera Diatraea and Xanthopherne (Lep., Pyral.) Bull Entomol Res 22:1–50CrossRefGoogle Scholar
  7. Burnquist W, Redshaw K, Gilmour R (2010) Evaluating sugarcane R&D performance: Evaluation of three breeding programs. Proc Int Soc Sugar Cane Technol 27:1–15Google Scholar
  8. Carrière Y, Fabrick JA, Tabashnik BE (2016) Can Pyramids and Seed Mixtures Delay Resistance to Bt Crops? Trends Biotechnol 34:291–302CrossRefPubMedGoogle Scholar
  9. Carroll MW, Head G, Caprio M (2012) When and where a seed mix refuge makes sense for managing insect resistance to Bt plants. Crop Prot 38:74–79CrossRefGoogle Scholar
  10. Cerny RE, Bookout JT, CaJacob CA, Groat JR, Hart JL, Heck GR, Huber SA, Listello J, Martens AB, Oppenhuizen ME (2010) Development and Characterization of a Cotton (L.) Event with Enhanced Reproductive Resistance to Glyphosate. Crop Sci 50:1375–1384CrossRefGoogle Scholar
  11. Christian A, Petersen MW, Ye X, Somers DA, Rinehart JA, Frank LW, Pang S, Nichols AM, Korte JA, Yang H (2008) Methods for Identifying Genetic Linkage US Patent Application US 20110015084 A1Google Scholar
  12. de Melo AB, Parra JR (1988) Exigências térmicas e estimativa do número de gerações anuais de broca-da-cana-de-açúcar em quatro localidades canavieiras de São Paulo. Pesq Agropec Bras 23:691–696Google Scholar
  13. de Oliveira Souza DS (2013) Suscetibilidade de Diatraea saccharalis (Fabricius)(Lepidoptera: Crambidae) à proteína inseticida Cry1F de Bacillus thuringiensis Berliner no Brasil. Dissertation, Escola Superior de Agricultura Luiz de QueirozGoogle Scholar
  14. Dinardo-Miranda LL, Fracasso JV, dos Anjos IA, Garcia J, da Costa VP (2012) Influência da infestação de Diatraea saccharalis (Fabr.) sobre parâmetros tecnológicos da cana-de-açúcar. Bragantia 71:342–345CrossRefGoogle Scholar
  15. EPA (1998) US Environmental Protection Agency Subpanel on Bacillus thuringiensis (Bt) plant-pesticides and resistance management. In: Scientific Advisory Panel meeting, 9–10 Feb 1998. ArlingtonGoogle Scholar
  16. Farias JR, Costa EC, Guedes JV, Arbage AP, Neto AP, Bigolin M, Pinto FF (2013) Managing the sugarcane borer, Diatraea saccharalis, and corn earworm, Helicoverpa zea, using Bt corn and insecticide treatments. J Insect Sci 13:109CrossRefPubMedPubMedCentralGoogle Scholar
  17. Finney DJ, Tattersfield F (1952) Probit analysis. Cambridge University Press, CambridgeGoogle Scholar
  18. Girón-Pérez K, Oliveira A, Teixeira A, Guedes R, Pereira E (2014) Susceptibility of Brazilian populations of Diatraea saccharalis to Cry1Ab and response to selection for resistance. Crop Prot 62:124–128CrossRefGoogle Scholar
  19. Guevara LAC, Wiendl FM (1980) Aspectos da biologia, em condições de campo, da broca da cana-de-açúcar (Diatraea saccharalis) (Fabr. 1974). Agropecuária Técnica, Piracicaba 1:32–39Google Scholar
  20. Holloway TE, Haley W, Heinrich C, Loftin UC (1928) The sugar-cane moth borer in the United States. US Dep Agric Tech Bull 41:1–76Google Scholar
  21. Huesing JE, Andres D, Braverman MP, Burns A, Felsot AS, Harrigan GG, Hellmich RL, Reynolds A, Shelton AM, Jansen van Rijssen W (2016) Global Adoption of Genetically Modified (GM) Crops: Challenges for the Public Sector. J Agric Food Chem 64:381–382CrossRefGoogle Scholar
  22. Joyce AL, White WH, Nuessly GS, Solis MA, Scheffer SJ, Lewis ML, Medina RF (2014) Geographic population structure of the sugarcane borer, Diatraea saccharalis (F.)(Lepidoptera: Crambidae), in the southern United States. PLoS One 9(10):e110036.  https://doi.org/10.1371/journal.pone.0110036 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214CrossRefPubMedGoogle Scholar
  24. Leibbrandt NB (1993) Developments for improved chemical cane eradication. Proc South Afr Sugar Technol Assoc 15:39–43Google Scholar
  25. Long W, Hensley S (1972) Insect pests of sugar cane. Annu Rev Entomol 17:149–176CrossRefGoogle Scholar
  26. Mallet J, Porter P (1992) Preventing insect adaptation to insect-resistant crops: Are seed mixtures or refugia the best strategy? Proc R Soc Lond B Biol Sci 250:165–169CrossRefGoogle Scholar
  27. McKaig N (1936) Chemical composition of juice from Louisiana sugarcane injured by the sugarcane borer and the red rot disease. J Agric Res 52:17–25Google Scholar
  28. Oliveira C, Auad A, Mendes S, Frizzas M (2014) Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Prot 56:50–54CrossRefGoogle Scholar
  29. Pashley D, Hardy T, Hammond A, Mihm J (1990) Genetic evidence for sibling species within the sugarcane borer (Lepidoptera: Pyralidae). Ann Entomol Soc Am 83:1048–1053CrossRefGoogle Scholar
  30. Peng T, Sun X, Mumm RH (2014) Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression. Mol Breed 33:89–104CrossRefPubMedGoogle Scholar
  31. Prado JR, Segers G, Voelker T, Carson D, Dobert R, Phillips J, Cook K, Cornejo C, Monken J, Grapes L (2014) Genetically engineered crops: from idea to product. Annu Rev Plant Biol 65:769–790CrossRefPubMedGoogle Scholar
  32. Preuss SB, Meister R, Xu Q, Urwin CP, Tripodi FA, Screen SE, Anil VS, Zhu S, Morrell JA, Liu G, Ratcliffe OJ, Reuber TL, Khanna R, Goldman BS, Bell E, Ziegler TE, McClerren AL, Ruff TG, Petracek ME (2012) Expression of the Arabidopsis thaliana BBX32 Gene in Soybean Increases Grain Yield. PLoS One 7(2):e30717.  https://doi.org/10.1371/journal.pone.0030717 CrossRefPubMedPubMedCentralGoogle Scholar
  33. R_Core_Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  34. Ross P, Fillols E (2017) Weed Management in Sugarcane Manual. Sugar Research Australia Limited 2017 edition of the Weed Management Manual published in 2010 by BSES LimitedGoogle Scholar
  35. Rossato JA, Costa GH, Madaleno LL, Mutton MJ, Higley LG, Fernandes OA (2013) Characterization and impact of the sugarcane borer on sugarcane yield and quality. Agron J 105:643–648CrossRefGoogle Scholar
  36. Roush R (1998) Two–toxin strategies for management of insecticidal transgenic crops: Can pyramiding succeed where pesticide mixtures have not? Philos Trans R Soc Lond Ser B Biol Sci 353:1777–1786CrossRefGoogle Scholar
  37. Salvatore A, Garcia M, Romero E, Willink E (2010) Sugar losses caused by the sugarcane borer (Diatraea saccharalis) in Tucumán, Argentina. Proc Int Soc Sugar Cane Technol 27:1–9Google Scholar
  38. Schowalter T, Foil LD, Davis JA, Smith T, Huang F, Reed DP, Beuzelin J, Kerns DL, Ring DR, Stout MJ, Healy K, Brown S, Morgan AL, Reagan TE (2015) Louisiana Insect Pest Management Guide. Louisiana State University AgCenter, Baton RougeGoogle Scholar
  39. Silva-Brandão KL, Santos TV, Cônsoli FL, Omoto C (2015) Genetic Diversity and Structure of Brazilian Populations of Diatraea saccharalis (Lepidoptera: Crambidae): Implications for Pest Management. J Econ Entomol 108:307–316CrossRefPubMedGoogle Scholar
  40. Spekken M, Molin JP, Romanelli TL (2015) Cost of boundary manoeuvres in sugarcane production. Biosyst Eng 129:112–126CrossRefGoogle Scholar
  41. Srikanth J, Subramonian N, Premachandran M (2011) Advances in transgenic research for insect resistance in sugarcane. Trop Plant Biol 4:52–61CrossRefGoogle Scholar
  42. Tan S, Cayabyab B, Alcantara E, Ibrahim Y, Huang F, Blankenship EE, Siegfried BD (2011) Comparative susceptibility of Ostrinia furnacalis, Ostrinia nubilalis and Diatraea saccharalis (Lepidoptera: Crambidae) to Bacillus thuringiensis Cry1 toxins. Crop Prot 30:1184–1189CrossRefGoogle Scholar
  43. Vargas G, Gómez LA, Michaud J (2015) Sugarcane stem borers of the Colombian Cauca River Valley: current pest status, biology, and control. Fla Entomol 98:728–735CrossRefGoogle Scholar
  44. Wangila DS, Leonard BR, Ghimire MN, Bai Y, Zhang L, Yang Y, Emfinger KD, Head GP, Yang F, Niu Y (2013) Occurrence and larval movement of Diatraea saccharalis (Lepidoptera: Crambidae) in seed mixes of non-Bt and Bt pyramid corn. Pest Manag Sci 69:1163–1172CrossRefPubMedGoogle Scholar
  45. Waquil JM, Dourado PM, Carvalho RA, Oliveira WS, Berger GU, Head GP, Martinelli S (2013) Management of Lepidopteran pests in maize crop using the Bt pyramided event Cry1A. 105 and Cry2Ab2. Pesq Agropec Bras 48:1529–1537CrossRefGoogle Scholar
  46. Weng LX, Deng H, Xu JL, Li Q, Zhang YQ, Jiang ZD, Li QW, Chen JW, Zhang LH (2011) Transgenic sugarcane plants expressing high levels of modified cry1Ac provide effective control against stem borers in field trials. Transgenic Res 20:759–772CrossRefPubMedGoogle Scholar
  47. White W, Viator R, Dufrene E, Dalley C, Richard E, Tew T (2008) Re-evaluation of sugarcane borer (Lepidoptera: Crambidae) bioeconomics in Louisiana. Crop Prot 27:1256–1261CrossRefGoogle Scholar
  48. Wu X, Leonard BR, Zhu YC, Abel CA, Head GP, Huang F (2009) Susceptibility of Cry1Ab-resistant and-susceptible sugarcane borer (Lepidoptera: Crambidae) to four Bacillus thuringiensis toxins. J Invertebr Pathol 100:29–34CrossRefPubMedGoogle Scholar
  49. Zhang L, Huang F, Leonard BR, Chen M, Clark T, Zhu YC, Wangila DS, Yang F, Niu Y (2013) Susceptibility of Cry1Ab maize-resistant and-susceptible strains of sugarcane borer (Lepidoptera: Crambidae) to four individual Cry proteins. J Invertebr Pathol 112:267–272CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Plinio T. Cristofoletti
    • 1
  • Edson L. Kemper
    • 1
  • Adriana N. Capella
    • 1
  • Sandra R. Carmago
    • 2
  • Juliana L. Cazoto
    • 1
  • Fernanda Ferrari
    • 1
  • Tederson L. Galvan
    • 1
  • Luciane Gauer
    • 1
  • Gustavo A. Monge
    • 3
  • Marcelo A. Nishikawa
    • 2
  • Nicolas Z. Santos
    • 1
  • Altair A. Semeao
    • 1
  • Leandro Silva
    • 1
  • Alan R. Willse
    • 4
  • Almir Zanca
    • 5
  • Michael D. Edgerton
    • 6
  1. 1.Monsanto do BrasílSão PauloBrazil
  2. 2.Bayer S.A.São PauloBrazil
  3. 3.NideraCiudad de Buenos AiresArgentina
  4. 4.Monsanto CompanySt. LouisUSA
  5. 5.Universidade Estadual de CampinasSão PauloBrazil
  6. 6.GrotonUSA

Personalised recommendations