Advertisement

Journal of Genetics

, 98:64 | Cite as

Genetic characterisation of the erythrocyte-binding protein (\(\hbox {Pk}{\upbeta }\hbox {II}\)) of Plasmodium knowlesi isolates from Malaysia

  • Mun Yik Fong
  • Yee Ling Lau
  • Jenarun Jelip
  • Choo Huck Ooi
  • Fei Wen CheongEmail author
Research Note
  • 9 Downloads

Abstract

Plasmodium knowlesi contributes to the majority of human malaria incidences in Malaysia. Its uncontrollable passage among the natural monkey hosts can potentially lead to zoonotic outbreaks. The merozoite of this parasite invades host erythrocytes through interaction between its erythrocyte-binding proteins (EBPs) and their respective receptor on the erythrocytes. The region II of P. knowlesi EBP, P. knowlesi beta (\(\hbox {Pk}{\upbeta }\hbox {II}\)) protein is found to be mediating merozoite invasion into monkey erythrocytes by interacting with sialic acid receptors. Hence, the objective of this study was to investigate the genetic diversity, natural selection and haplotype grouping of \(\hbox {Pk}{\upbeta }\hbox {II}\) of P. knowlesi isolates in Malaysia. Polymerase chain reaction amplifications of \(\hbox {Pk}{\upbeta }\hbox {II}\) were performed on archived blood samples from Malaysia and 64 \(\hbox {Pk}{\upbeta }\hbox {II}\) sequences were obtained. Sequence analysis revealed length polymorphism, and its amino acids at critical residues indicate the ability of \(\hbox {Pk}{\upbeta }\hbox {II}\) to mediate P. knowlesi invasion into monkey erythrocytes. Low genetic diversity (\({\uppi } = 0.007\)) was observed in the \(\hbox {Pk}{\upbeta }\hbox {II}\) of Malaysia Borneo compared to Peninsular Malaysia (\({\uppi } = 0.015\)). The \(\hbox {Pk}{\upbeta }\hbox {II}\) was found to be under strong purifying selection to retain infectivity in monkeys and it plays a limited role in the zoonotic potential of P. knowlesi. Its haplotypes could be clustered into Peninsular Malaysia and Malaysia Borneo groups, indicating the existence of two distinct P. knowlesi parasites in Malaysia as reported in an earlier study.

Keywords

beta protein genetic diversity haplotypes natural selection Plasmodium knowlesi 

Notes

Acknowledgements

This work was supported by the Fundamental Research Grant Scheme (FP036-2015A) of the Ministry of Higher Education, Malaysia. We express our thanks to the Diagnostic Laboratory (Para:SEAD), Department of Parasitology, University of Malaya, and participating hospitals in Sabah and Sarawak for providing the archived blood samples.

References

  1. Abdul-Latiff M. A., Ruslin F., Fui V. V., Abu M. H., Rovie-Ryan J. J., Abdul-Patah P. et al. 2014 Phylogenetic relationships of Malaysia’s long-tailed macaques, Macaca fascicularis, based on cytochrome b sequences. ZooKeys 407, 121–140.CrossRefGoogle Scholar
  2. Bandelt H. J., Forster P. and Rohl A. 1999 Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48.CrossRefGoogle Scholar
  3. Chitnis C. E. and Miller L. H. 1994 Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J. Exp. Med180, 497–506.CrossRefGoogle Scholar
  4. Chua C. Y., Lee P. C. and Lau T. Y. 2017 Analysis of polymorphisms and selective pressures on ama1 gene in Plasmodium knowlesi isolates from Sabah, Malaysia. J. Genet. 96, 653–663.CrossRefGoogle Scholar
  5. Dankwa S., Lim C., Bei A. K., Jiang R. H., Abshire J. R., Patel S. D. et al. 2016 Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite. Nat. Commun. 7, 11187.CrossRefGoogle Scholar
  6. De Silva J. R., Lau Y. L. and Fong M. Y. 2017 Genetic clustering and polymorphism of the merozoite surface protein-3 of Plasmodium knowlesi clinical isolates from Peninsular Malaysia. Parasit. Vectors 10, 2.CrossRefGoogle Scholar
  7. Fong M. Y., Rashdi S. A., Yusof R. and Lau Y. L. 2015 Distinct genetic difference between the Duffy binding protein (PkDBPalphaII) of Plasmodium knowlesi clinical isolates from North Borneo and Peninsular Malaysia. Malar. J. 14, 91.CrossRefGoogle Scholar
  8. Fong M. Y., Rashdi S. A., Yusof R. and Lau Y. L. 2016 Genetic diversity, natural selection and haplotype grouping of Plasmodium knowlesi gamma protein region II (PkgammaRII): comparison with the duffy binding protein (PkDBPalphaRII). PLoS One 11, e0155627.CrossRefGoogle Scholar
  9. Hartl D. L. and Clark A. G. 1997 Principles of population genetics, 3rd edition. Sinauer Associates, Sunderland.Google Scholar
  10. Hudson R. R., Slatkin M. and Maddison W. P. 1992 Estimation of levels of gene flow from DNA sequence data. Genetics 132, 583–589.PubMedPubMedCentralGoogle Scholar
  11. Loewe L. 2008 Negative selection. Nat. Educ. 1, 59.Google Scholar
  12. Mayer D. C., Mu J. B., Feng X., Su X. Z. and Miller L. H. 2002 Polymorphism in a Plasmodium falciparum erythrocyte-binding ligand changes its receptor specificity. J. Exp. Med. 196, 1523–1528.CrossRefGoogle Scholar
  13. Mayer D. C., Mu J. B., Kaneko O., Duan J., Su X. Z. and Miller L. H. 2004 Polymorphism in the Plasmodium falciparum erythrocyte-binding ligand JESEBL/EBA-181 alters its receptor specificity. Proc. Natl. Acad. Sci. USA. 101, 2518–2523.CrossRefGoogle Scholar
  14. Singh B., Lee K. S., Matusop A., Radhakrishnan A., Shamsul S. S., Cox-Singh J. et al. 2004 A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363, 1017–1024.CrossRefGoogle Scholar
  15. Singh S. K., Hora R., Belrhali H., Chitnis C. E. and Sharma A. 2006 Structural basis for Duffy recognition by the malaria parasite Duffy-binding-like domain. Nature 439, 741–744.CrossRefGoogle Scholar
  16. Tamura K., Stecher G., Peterson D., Filipski A. and Kumar S. 2013 MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol30, 2725–2729.CrossRefGoogle Scholar
  17. Vythilingam I, Tan C. H., Asmad M., Chan S. T., Lee K. S. and Singh B. 2006 Natural transmission of Plasmodium knowlesi to humans by Anopheles latens in Sarawak, Malaysia. Trans. R. Soc. Trop. Med. Hyg. 100, 1087–1088.CrossRefGoogle Scholar
  18. Wong M. L., Chua T. H., Leong C. S., Khaw L. T., Fornace K., Wan-Sulaiman W. Y. et al. 2015 Seasonal and spatial dynamics of the primary vector of Plasmodium knowlesi within a major transmission focus in Sabah, Malaysia. PLoS Negl. Trop. Dis9, e0004135.CrossRefGoogle Scholar
  19. World Health Organization. 2017 Outcomes from the evidence review group on Plasmodium knowlesi. Available at: http://www.who.int/malaria/mpac/mpac-mar2017-plasmodium-knowlesi-presentation.pdf, accessed 10 July 2018.
  20. Yusof R., Ahmed M. A., Jelip J., Ngian H. U., Mustakim S., Hussin, H. M. et al. 2016 Phylogeographic evidence for 2 genetically distinct zoonotic Plasmodium knowlesi parasites, Malaysia. Emerg. Infect. Dis. 22, 1371–1380.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of ParasitologyUniversity of MalayaKuala LumpurMalaysia
  2. 2.Sabah State Health DepartmentKota KinabaluMalaysia
  3. 3.Vector Borne Disease Sector, Disease Control DivisionMinistry of HealthPutrajayaMalaysia
  4. 4.Sarawak State Health DepartmentKuchingMalaysia

Personalised recommendations