Journal of Genetics

, 98:57 | Cite as

Genetic structure of Mediterranean fruit fly (Diptera: Tephritidae) populations from Turkey revealed by mitochondrial DNA markers

  • Abuzer Güler
  • Elmas Karakoç
  • Güven Gökdere
  • Ersin Doğaç
  • Vatan TaşkinEmail author
Research Article


Ceratitis capitata is one among the most destructive and economically important agricultural pests worldwide. Despite its economic significance, the population structures of this pest have remained relatively unexplored in the eastern Mediterranean basin. Using two mitochondrial markers, the present study aimed to examining the population genetic structure and diversity of C. capitata populations in Turkey, the region that covers a large part of the eastern Mediterranean area. Our results revealed that the Turkish Mediterranean fruit fly populations are characterized by low levels of genetic diversity and limited population differentiation. For comparison purposes, we merged the sequences identified in the present study with the previously reported sequences from across the world into the data matrix. The haplotype network showed that, unlike the African samples the Mediterranean samples and samples from the new world (America, Pacific region and Australia) did not show any clear pattern of geographical structuring, which indicates that the Mediterranean basin, particularly the eastern Mediterranean region populations, may have played a more important role in the colonization of C. capitata populations to the new world. The results also revealed a close genetic relationship between the Turkish and Iranian populations, suggesting that the Iranian C. capitata populations probably originated from Turkey.


population structure mitochondrial variation colonizing species medfly Tephritidae Ceratitis capitata 



This research was financially supported by the Muğla Sıtkı Koçman University Scientific Research Projects Co-ordination Office (project grant numbers MUBAP 15/075, MUBAP 15/177 and MUBAP 15/171). The authors are grateful to the staff at the Directorate of Plant Protection Research Institutes at corresponding sampling locations for providing samples. The laboratory strain of C. capitata was kindly provided by the Bornova Directorate of Plant Protection Research Institutes (İzmir, Turkey). We also thank the two anonymous reviewers for suggestions which improved the manuscript.

Supplementary material

12041_2019_1106_MOESM1_ESM.docx (226 kb)
Supplementary material 1 (docx 225 KB)


  1. Arias L., Bejarano E. E., Marquez E., Moncada J., Velez I. and Uribe S. 2005 Mitochondrial DNA divergence between wild and laboratory populations of Anopheles albiminus Weidmann (Diptera: Culicidae). Neotrop. Entomol.  34, 499–506.CrossRefGoogle Scholar
  2. Aydemir M. (ed.) 2008 Zirai mücadele teknik talimatları cilt V. Agricultural combat technical instructions, volume V, pp. 57–60. Gıda Tarım ve Hayvancılık Bakanlığı, Ankara, Turkey (in Turkish).Google Scholar
  3. Bandelt H. J., Forster P. and Rohl A. 1999 Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol.  16, 37–48.CrossRefGoogle Scholar
  4. Barr N. B. 2009 Pathway analysis of Ceratitis capitata (Diptera: Tephritidae) using mitochondrial DNA. J. Econ. Entomol.  102, 401–411.CrossRefGoogle Scholar
  5. Barr N. B, Islam M. S., De Meyer M. and Mcpheron B. A. 2012 Molecular identification of Ceratitis capitata (Diptera: Tephritidae) using DNA sequences of the COI barcode region. Ann. Entomol. Soc. Am.  105, 339–350.CrossRefGoogle Scholar
  6. Baruffi L., Damiani G., Guglielmino C. R., Bandi C., Malacrida A. R. and Gasperi G. 1995 Polymorphism within and between populations of Ceratitis capitata: comparison between RAPD and multilocus enzyme electrophoresis data. Heredity  74, 425–437.CrossRefGoogle Scholar
  7. Bender W., Spierer P. and Hogness D. S. 1983 Chromosomal walking and jumping to isolate DNA from the Ace and Rosy loci and bithorax complex in D. melanogaster. J. Mol. Biol.  168, 17–33.CrossRefGoogle Scholar
  8. Beroiz B., Ortego F., Callejas C., Hernandez-Crespo P., Castañera P. and Ochando M. D. 2012 Genetic structure of Spanish populations of Ceratitis capitate revealed by RAPD and ISSR markers: implications for resistance management. Span. J. Agric. Res.  10, 815–825.CrossRefGoogle Scholar
  9. Bonizzoni M., Guglielmino C. R., Smallridge C. J., Gomulski M., Malacrida A. R. and Gasperi G. 2004 On the origins of medfly invasion and expansion in Australia. Mol. Ecol.  13, 3845–3855.CrossRefGoogle Scholar
  10. Dogac E., Kandemir I. and Taskin V. 2013 The genetic polymorphisms and colonization process of olive fly populations in Turkey. PLoS One  8, e56067.CrossRefGoogle Scholar
  11. Elekçioğlu N. Z. 2009 Akdeniz Meyve sineği. Biyoloji Bilimleri Araştırma Dergisi  2, 61–65.Google Scholar
  12. Elfékih S., Makni M. and Haymer D. S. 2010a Detection of novel mitochondrial haplotype variants in populations of the Mediterranean fruit fly, Ceratitis capitata, from Tunisia, Israel and Morocco. J. Appl. Entomol.  134, 647–651.Google Scholar
  13. Elfékih S., Makni M. and Haymer D. S. 2010b Genetic diversity of ND5 mitochondrial patterns in Ceratitis capitata (Diptera: Tephritidae) populations from Tunisia. Ann. Soc. Entomol. Fr.  46, 464–470.CrossRefGoogle Scholar
  14. Eti C. N., Dogac E., Taskin B. G., Gokdere G. and Taskin V. 2018 Population structure and patterns of geographic differentiation of olive fly Bactrocera oleae (Diptera: Tephritidae) in Eastern Mediterranean Basin. Mitochondrial DNA Part A  29, 1051–1062.CrossRefGoogle Scholar
  15. Excoffier L., Laval G. and Schneider S. 2005 ARLEQIN (ver. 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online  1, 47–50.CrossRefGoogle Scholar
  16. Fimiani P. 1989 Mediterranean region. In Fruit flies: their biology, natural enemies and control (ed. A. S. Robinson and G. H. Hooper), vol. 3A, pp. 39–50. Elsevier, Amsterdam.Google Scholar
  17. Gallo D. N. O., Wiendel F. M., Silvera Neto S. and Ricardo P. L. C. 1970 Manual de entomologia agronomica. Ceres, Sao Paulo.Google Scholar
  18. Gallo-Franco J. G., Velasco-Cuervo S. M., Aguirre-Ramirez E., Obando R. G., Carrejo N. S. and Toro-Perea N. 2017 Genetic diversity and population structure of Anastrepha striata (Diptera: Tephritidae) in three natural regions of southwestern Colombia using mitochondrial sequences. Genetica  145, 79–89.CrossRefGoogle Scholar
  19. Gasparich G. E., Sheppard W. S., Han H. Y., McPheron B. A. and Steck G. J. 1995 Analysis of mitochondrial DNA and development of PCR-based diagnostic molecular markers for the Mediterranean fruit fly (Ceratitis capitata) populations. Insect Mol. Biol.  4, 61–67.CrossRefGoogle Scholar
  20. Gasparich G. E., Silva J. G., Han H. Y., Mcpheron B. A., Steck G. J. and Sheppard W. S. 1997 Population genetic structure of Mediterranean fruit fly (Diptera: Tephritidae) and implications for worldwide colonization patterns. Ann. Entomol. Soc. Am.  90, 790–797.CrossRefGoogle Scholar
  21. Gasperi G., Guglielmino C. R., Malacrida A. R. and Milani R. 1991 Genetic variability and gene flow in geographical populations of Ceratitis capitata (Wied.) (medfly). Heredity  67, 347–356.CrossRefGoogle Scholar
  22. Gasperi G., Bonizzoni M., Gomulski L. M., Murelli V., Torti C., Malacrida A. R. et al. 2002 Genetic differentiation, gene flow and the origin of infestations of the medfly, Ceratitis capitata. Genetica  116, 125–135.CrossRefGoogle Scholar
  23. Gomulski L. M., Bourtzis K., Brogna S., Morandi P. A., Bonvicini C., Sebastiani F. et al. 1998 Intron size polymorphism of the Adh1 gene parallels the worldwide colonization history of the Mediterranean fruit fly, Ceratitis capitata. Mol. Ecol.  7, 1729–1741.CrossRefGoogle Scholar
  24. Haymer D. S. and McInnis D. O. 1994 Resolution of populations of the Mediterranean fruit fly at the DNA level using random primers for the polymerase chain reaction. Genome  37, 244–248.CrossRefGoogle Scholar
  25. Headrick D. H. and Goeden R. D. 1996 Issues concerning the eradication or establishment and biological control of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) in California. Biol. Control  6, 412–421.CrossRefGoogle Scholar
  26. Hooper G. H. S. and Drew R. A. I. 1989 Australia and South Pacific islands. In Fruit flies: their biology, natural enemies and control (ed. A. S. Robinson and G. H. Hooper) vol. 3A, pp. 67–72. Elsevier, Amsterdam.Google Scholar
  27. Karsten M., van Vuuren B. J., Barnaud A. and Terblanche J. S. 2013 Population genetics of Ceratitis capitata in South Africa: implications for dispersal and pest management. PLoS One  8, e54281.CrossRefGoogle Scholar
  28. Kumar S., Stecher G. and Tamura K. 2016 MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol.  33, 1870–1874.CrossRefGoogle Scholar
  29. Lainhart W., Bickersmith S. A., Moreno M., Rios C. T., Vinetz J. M. and Conn J. E. 2015 Changes in genetic diversity from field to laboratory during colonization of Anopheles darlingi (Diptera: Culicidae). Am. J. Trop. Med. Hyg.  93, 998–1001.CrossRefGoogle Scholar
  30. Lanzavecchia S. B., Cladera J. L., Faccio P., Marty N. P., Vilardi J. C. and Zandomeni R. O. 2008 Origin and distribution of Ceratitis capitata mitochondrial DNA haplotypes in Argentina. Ann. Entomol. Soc. Am.  101, 627–638.CrossRefGoogle Scholar
  31. Librado P. and Rozas J. 2009 DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics  25, 1451–1452.CrossRefGoogle Scholar
  32. Lockwood J. L., Cassey P. and Blackburn T. 2005 The role of propagule pressure in explaining species invasions. Trends Ecol. Evol.  20, 223–228.CrossRefGoogle Scholar
  33. Malacrida A. R., Marinoni F., Torti C., Gomulski L. M., Sebastiani F., Bonvicini C. et al. 1998 Genetic aspects of the worldwide colonization process of Ceratitis capitata. Heredity  89, 501–507.CrossRefGoogle Scholar
  34. Malacrida A. R., Gomulski L. M., Bonizzoni M., Bertin S., Gasperi G. and Guglielmino C. R. 2007 Globalization and fruit fly invasion and expansion: the medfly paradigm. Genetica  131, 1–9.CrossRefGoogle Scholar
  35. Mantel N. 1967 The detection of disease clustering and a generalized regression approach. Cancer Res.  27, 209–220.Google Scholar
  36. Meeyen K., Sopaladawan N. P. and Pramual P. 2014 Population structure, population history and DNA barcoding of fruit fly Bactrocera latifrons (Hendel) (Diptera: Tephritidae). Entomol. Sci.  17, 219–230.CrossRefGoogle Scholar
  37. Nardi F., Carapelli A., Boore J. L., Roderick G. K., Dallai R. and Frati F. 2010 Domestication of olive fly through a multi-regional host shift to cultivated olives: comparative dating using complete mitochondrial genomes. Mol. Phylogenet. Evol.  57, 678–686.CrossRefGoogle Scholar
  38. Nigro L. 1994 Nuclear background affects frequency dynamics of mitochondrial DNA variants in Drosophila simulans. Heredity  72, 582–586.CrossRefGoogle Scholar
  39. Nigro L. and Prout T. 1990 Is there selection on RFLP differences in mtDNA? Genetics  125, 551–555.PubMedPubMedCentralGoogle Scholar
  40. Ochando M. D., Reyes A., Callejas C., Segura D. and Fernández P. 2003 Molecular genetic methodologies applied to the study of fly pests. Trends Entomol.  3, 73–85.Google Scholar
  41. Polzin T. and Daneschmand S. V. 2003 On Steiner trees and minimum spanning trees in hypergraphs. Oper. Res. Lett.  31, 12–20.CrossRefGoogle Scholar
  42. Rajabiyan M., Shayanmehr M. and Sharif M. M. 2015 The Mediterranean fruit fly (Ceratitis capitata) in Iran: genetic diversity and comparison with other countries. J. Entomol. Acarol. Res.  47, 4055.CrossRefGoogle Scholar
  43. Reyes A. and Ochando M. D. 1997 Fitness of mitochondrial DNA haplotypes in Ceratitis capitata. IOBC/wprs Bull.  20, 175–185.Google Scholar
  44. Reyes A. and Ochando M. D. 1998a Genetic differentiation in Spanish populations of Ceratitis capitata as revealed by abundant soluble protein analysis. Genetica  104, 59–66.CrossRefGoogle Scholar
  45. Reyes A. and Ochando M. D. 1998b Use of molecular markers for detecting the geographical origin of Ceratitis capitata (Diptera: Tephritidae) populations. Ann. Entomol. Soc. Am.  91, 222–227.CrossRefGoogle Scholar
  46. Reyes A. and Ochando M. D. 2004 Mitochondrial DNA variation in Spanish populations of Ceratitis capitata (Wiedemann) (Tephritidae) and the colonization process. J. Appl. Entomol.  128, 358–364.CrossRefGoogle Scholar
  47. Roderick G. K. and Navajas M. 2003 Genes in new environments: genetics and evolution in biological control. Nat. Rev. Genet.  4, 889–899.CrossRefGoogle Scholar
  48. Sheppard W. S., Steck G. J. and Mcpheron B. A. 1992 Geographic populations of the medfly may be differentiated by mitochondrial DNA variation. Experientia  48, 1010–1013.CrossRefGoogle Scholar
  49. Zhang D. X. and Hewitt G. M. 1997 Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem. Syst. Ecol.  25, 99–120.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Faculty of Science, Department of BiologyMuğla Sitki Kocman UniversityKotekliTurkey
  2. 2.Department of Medicinal and Aromatic Plants, Koycegiz Vocational SchoolMuğla Sitki Kocman UniversityMuğlaTurkey

Personalised recommendations