Advertisement

Journal of Genetics

, 98:60 | Cite as

Meta-analysis of genomic variants and gene expression data in schizophrenia suggests the potential need for adjunctive therapeutic interventions for neuropsychiatric disorders

  • S. Anirudh Chellappa
  • Ankit Kumar Pathak
  • Prashant Sinha
  • ASHWIN K. Jainarayanan
  • Sanjeev Jain
  • Samir K. BrahmachariEmail author
Research Article
  • 73 Downloads

Abstract

Schizophrenia (SZ) is a debilitating mental illness with a multigenic aetiology and significant heritability. Despite extensive genetic studies, the molecular aetiology has remained enigmatic. A recent systems biology study suggested a protein–protein interaction network for SZ with 504 novel interactions. The onset of psychiatric disorders is predominant during adolescence, often accompanied by subtle structural abnormalities in multiple regions of the brain. The availability of BrainSpan Atlas data allowed us to re-examine the genes present in the SZ interactome as a function of space and time. The availability of genomes of healthy centenarians and nonpsychiatric Exome Aggregation Consortium database allowed us to identify the variants of criticality. The expression of the SZ candidate genes responsible for cognition and disease onset was studied in different brain regions during particular developmental stages. A subset of novel interactors detected in the network was further validated using gene expression data of post-mortem brains of patients with psychiatric illness. We have narrowed down the list of drug targets proposed by the previous interactome study to 10 proteins. These proteins belonging to 81 biological pathways are targeted by 34 known Food and Drug Administration-approved drugs that have distinct potential for the treatment of neuropsychiatric disorders. We also report the possibility of targeting key genes belonging to celecoxib pharmacodynamics, \(\hbox {G}\upalpha \) signalling and cGMP-PKG signalling pathways that are not known to be specific to SZ aetiology.

Keywords

schizophrenia centenarians interactome BrainSpan post-mortem pathways drug repurposing 

Notes

Acknowledgements

SKB is a recipient of the J. C. Bose National Fellowship. ACS thanks Mohandas Pai foundation for providing fellowship support through Centre for Open Innovation, IndianCST. We thank Raja Seevan, Sri Kumar and the IndianCST team for the infrastructure support. We thank NIMHANS for providing institutional support to SJ. We thank N. Balakrishnan for providing access to the computational facility at the Supercomputer Education and Research Centre, Indian Institute of Science. We also thank Vinod Scaria for providing access to the allele frequencies from his centenarian genome data and Beena Pillai for inputs on gene expression data analysis. We finally thank Meera Purushottam, Ramakrishnan Kannan, Biju Viswanath and Ravi Kumar Nadella for critical reading of this manuscript.

Supplementary material

12041_2019_1101_MOESM1_ESM.tif (160 kb)
Supplementary material 1 (tif 160 KB)
12041_2019_1101_MOESM2_ESM.tif (314 kb)
Supplementary material 2 (tif 314 KB)
12041_2019_1101_MOESM3_ESM.tif (272 kb)
Supplementary material 3 (tif 271 KB)
12041_2019_1101_MOESM4_ESM.tiff (576 kb)
Supplementary material 4 (tiff 575 KB)
12041_2019_1101_MOESM5_ESM.tif (86 kb)
Supplementary material 5 (tif 85 KB)
12041_2019_1101_MOESM6_ESM.tif (80 kb)
Supplementary material 6 (tif 79 KB)
12041_2019_1101_MOESM7_ESM.tif (81 kb)
Supplementary material 7 (tif 81 KB)
12041_2019_1101_MOESM8_ESM.tif (91 kb)
Supplementary material 8 (tif 90 KB)
12041_2019_1101_MOESM9_ESM.tiff (2.4 mb)
Supplementary material 9 (tiff 2463 KB)
12041_2019_1101_MOESM10_ESM.xls (30 kb)
Supplementary material 10 (xls 29 KB)
12041_2019_1101_MOESM11_ESM.pdf (11.9 mb)
Supplementary material 11 (pdf 12163 KB)
12041_2019_1101_MOESM12_ESM.xls (162 kb)
Supplementary material 12 (xls 162 KB)
12041_2019_1101_MOESM13_ESM.doc (84 kb)
Supplementary material 13 (doc 83 KB)
12041_2019_1101_MOESM14_ESM.xls (2.2 mb)
Supplementary material 14 (xls 2274 KB)
12041_2019_1101_MOESM15_ESM.xls (152 kb)
Supplementary material 15 (xls 152 KB)
12041_2019_1101_MOESM16_ESM.xls (15 kb)
Supplementary material 16 (xls 15 KB)
12041_2019_1101_MOESM17_ESM.xls (18 kb)
Supplementary material 17 (xls 17 KB)
12041_2019_1101_MOESM18_ESM.xls (16 kb)
Supplementary material 18 (xls 15 KB)
12041_2019_1101_MOESM19_ESM.xls (29 kb)
Supplementary material 19 (xls 29 KB)

References

  1. AbdAlla S., Langer A., Fu X. and Quitterer U. 2013 ACE inhibition with captopril retards the development of signs of neurodegeneration in an animal model of Alzheimer’s disease. Int. J. Mol. Sci. 14, 16917–16942.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adzhubei I. A., Schmidt S., Peshkin L., Ramensky V. E., Gerasimova A., Bork P. et al. 2010 A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amberger J. S., Bocchini C. A., Schiettecatte F., Scott A. F. and Hamosh A. 2015 OMIM.org: online mendelian inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43, D789–D798.lCrossRefGoogle Scholar
  4. Brainstorm Consortium, Anttila V., Bulik-Sullivan B., Finucane H. K., Walters R. K., Bras J. et al. 2018 Analysis of shared heritability in common disorders of the brain. Science 360, 6395.CrossRefGoogle Scholar
  5. Cardno A. G., Rijsdijk F. V., West R. M., Gottesman I. I., Craddock N., Murray R. M. et al. 2012 A twin study of schizoaffective-mania, schizoaffective-depression and other psychotic syndromes. Am. J. Med. Genet. 159B, 172–182.CrossRefGoogle Scholar
  6. Carty N. C., Xu J., Kurup P., Brouillette J., Goebel-Goody S. M., Austin D. R. et al. 2012 The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications. Transl. Psychiatry 2, e137.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Castellani C. A., Laufer B. I., Melka M. G., Diehl E. J., O’Reilly R. L. and Singh S. M. 2015 DNA methylation differences in monozygotic twin pairs discordant for schizophrenia identifies psychosis related genes and networks. BMC Med. Genomics 8, 17.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dal P. I., Chiarini A., Gui L., Chakravarthy B., Pacchiana R., Gardenal E. et al. 2015 Do astrocytes collaborate with neurons in spreading the ‘infectious’ a\(\upbeta \) and Tau drivers of Alzheimer’s disease? Neuroscientist 21, 9–29.CrossRefGoogle Scholar
  9. De Peri L., Crescini A., Deste G., Fusar-Poli P., Sacchetti E. and Vita A. 2012 Brain structural abnormalities at the onset of schizophrenia and bipolar disorder: a meta-analysis of controlled magnetic resonance imaging studies. Curr. Pharm. Des. 18, 486–494.CrossRefGoogle Scholar
  10. Dolgin E. 2014 Massive schizophrenia genomics study offers New drug directions. Nat. Rev. Drug Discovery 13, 641–642.CrossRefGoogle Scholar
  11. Eckman E. A., Adams S. K., Troendle F. J., Stodola B. A., Kahn M. A., Fauq A. H. et al. 2006 Regulation of steady-state beta-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme. J. Biol. Chem. 281, 30471–30478.CrossRefGoogle Scholar
  12. Farrell M. S., Werge T., Sklar P., Owen M. J., Ophoff R. A., O’Donovan M. C. et al. 2015 Evaluating historical candidate genes for schizophrenia. Mol. Psychiatry 20, 555–562.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fillman S. G., Cloonan N., Catts V. S., Miller L. C., Wong J., McCrossin T. et al. 2013 Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol. Psychiatry 18, 206–214.CrossRefGoogle Scholar
  14. Freedman R., Leonard S., Olincy A., Kaufmann C. A., Malaspina D., Cloninger C. R. et al. 2001 Evidence for the multigenic inheritance of schizophrenia. Am. J. Med. Genet. 105, 794–800.CrossRefGoogle Scholar
  15. Gadelha A., Vendramini A. M., Yonamine C. M., Nering M., Berberian A., Suiama M. A. et al. 2015a Convergent evidences from human and animal studies implicate angiotensin I-converting enzyme activity in cognitive performance in schizophrenia. Transl. Psychiatry 5, e691.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gadelha A., Yonamine C. M., Nering M., Rizzo L. B., Noto C., Cogo-Moreira H. et al. 2015b Angiotensin converting enzyme activity is positively associated with IL-17a levels in patients with schizophrenia. Psychiatry Res. 229, 702–707.CrossRefGoogle Scholar
  17. Ganapathiraju M. K., Thahir M., Handen A., Sarkar S. N., Sweet R. A., Nimgaonkar V. L. et al. 2016 Schizophrenia interactome with 504 novel protein-protein interactions. npj Schizophr. 2, 16012.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gandal M. J., Haney J. R., Parikshak N. N., Leppa V., Ramaswami G., Hartl C. et al. 2018 Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359, 693–697.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gibbons A. S., Thomas E. A., Scarr E. and Dean B. 2010 Low density lipoprotein receptor-related protein and apolipoprotein E expression is altered in schizophrenia. Front. Psychiatry 1, 19.PubMedPubMedCentralGoogle Scholar
  20. Gillen A. E. and Harris A. 2012 Transcriptional regulation of CFTR gene expression. Front. Biosci. 4, 587–592.CrossRefGoogle Scholar
  21. Girard S. L., Dion P. A. and Rouleau G. A. 2012 Schizophrenia genetics: putting all the pieces together. Curr. Neurol. Neurosci. Rep. 12, 261–266.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Grote S., Prüfer K., Kelso J. and Dannemann M. 2016 ABAEnrichment: an R package to test for gene set expression enrichment in the adult and developing human brain. Bioinformatics 32, 3201–3203.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gupta S., Bisht S. S., Kukreti R., Jain S. and Brahmachari S. K. 2007 Boolean network analysis of a neurotransmitter signaling pathway. J. Theor. Biol. 244, 463–469.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hariprakash J. M., Vellarikkal S. K., Verma A., Ranawat A. S., Jayarajan R., Ravi R. et al. 2018 SAGE: a comprehensive resource of genetic variants integrating South Asian whole genomes and exomes. Database (Oxford). 2018, 1–10.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Haybaeck J., Postruznik M., Miller C. L., Dulay J. R., Llenos I. C. and Weis S. 2015 Increased expression of retinoic acid-induced gene 1 in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and major depression Neuropsychiatr. Dis. Treat. 11, 279–289.CrossRefPubMedPubMedCentralGoogle Scholar
  26. He R., Yu Z., Zhang R. and Zhang Z. 2014 Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol. Sin. 35, 1227–1246.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hendy G. N., Canaff L. and Cole D. E. 2013 The CASR gene: alternative splicing and transcriptional control, and calcium-sensing receptor (CaSR) protein: structure and ligand binding sites. Best. Pract. Res. Clin. Endocrinol. Metab. 27, 285–301.CrossRefGoogle Scholar
  28. Hindorff L. A., Sethupathy P., Junkins H. A., Ramos E. M., Mehta J. P., Collins F. S. et al. 2009 Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367.CrossRefGoogle Scholar
  29. Hobgood D. K. 2013 ACE inhibitors could be therapeutic for antisocial personality disorder. Med. Hypotheses 81, 757–759.CrossRefGoogle Scholar
  30. Hoosain F. G., Choonara Y. E., Tomar L. K., Kumar P., Tyagi C., Toit L. C. et al. 2015 Bypassing P-glycoprotein drug efflux mechanisms: possible applications in pharmacoresistant schizophrenia therapy. Biomed Res. Int. 484963, 1–21.CrossRefGoogle Scholar
  31. Howard R., Rabins P. V., Seeman M. V. and Jeste D. V. 2000 Late-onset schizophrenia and very-late-onset schizophrenia-like psychosis: an international consensus. The international late-onset schizophrenia group. Am. J. Psychiatry 157, 172–178.CrossRefGoogle Scholar
  32. Imming P., Sinning C. and Meyer A. 2006 Drugs, their targets and the nature and number of drug targets. Nat. Rev. Drug Discovery 5, 821–834.CrossRefGoogle Scholar
  33. Jarvis C. I., Goncalves M. B., Clarke E., Dogruel M., Kalindjian S. B., Thomas S. A. et al. 2010 Retinoic acid receptor-\(\upalpha \) signalling antagonizes both intracellular and extracellular amyloid-\(\upbeta \) production and prevents neuronal cell death caused by amyloid-\(\upbeta \). Eur. J. Neurosci. 32, 1246–1255.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kamburov A., Pentchev K., Galicka H., Wierling C., Lehrach H. and Herwig R. 2011 ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res. 39, D712–D717.CrossRefGoogle Scholar
  35. Kariuki S. N., Franek B. S., Mikolaitis R. A., Utset T. O., Jolly M., Skol A. D. et al. 2010 Promoter variant of PIK3C3 Is associated with autoimmunity against Ro and Sm epitopes in African-American lupus patients. J. Biomed. Biotechnol. 826434, 1–7.CrossRefGoogle Scholar
  36. Kataoka M., Matoba N., Sawada T., Kazuno A. A., Ishiwata M., Fujii K. et al. 2016 Exome sequencing for bipolar disorder points to roles of de Novo loss-of-function and protein-altering mutations. Mol. Psychiatry 21, 885–893.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Keshavan M. S., Anderson S. and Pettegrew J. W. 1994 Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J. Psychiatr. Res. 28, 239–265.CrossRefGoogle Scholar
  38. Kibar Z., Bosoi C. M., Kooistra M., Salem S., Finnell R. H., De-Marco P. et al. 2009 Novel mutations in VANGL1 in neural tube defects. Hum. Mutat. 30, E706–E715.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kim D. H., Sarbassov D. D., Ali S. M., King J. E., Latek R. R., Erdjument-Bromage H. et al. 2002 mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175.CrossRefGoogle Scholar
  40. Kim J. Y., Ho H., Kim N., Liu J., Tu C. L., Yenari M. A. et al. 2014 Calcium-sensing receptor (CaSR) as a novel target for ischemic neuroprotection. Ann. Clin. Transl. Neurol. 1, 851–866.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kumar V., Sanseau P., Simola D. F., Hurle M. R. and Agarwal P. 2016 Systematic analysis of drug targets confirms expression in disease-relevant tissues. Sci. Rep. 6, 36205.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lafioniatis A., Orfanidou M. A., Papadopoulou E. S. and Pitsikas N. 2016 Effects of the inducible nitric oxide synthase inhibitor aminoguanidine in two different rat models of schizophrenia. Behav. Brain Res. 1, 14–21.CrossRefGoogle Scholar
  43. Lanz T. A., Joshi J. J., Reinhart V., Johnson K., Grantham I. I. L. E. and Volfson D. 2015 STEP levels Are unchanged in Pre-frontal Cortex and associative Striatum in post-mortem human brain samples from subjects with schizophrenia, bipolar disorder and Major depressive disorder. PLoS One 10, e0121744.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lehtinen V., Joukamaa M., Lahtela K., Raitasalo R., Jyrkinen E., Maatela J. et al. 1990 Prevalence of mental disorders among adults in Finland: basic results from the Mini Finland health survey. Acta Psychiatr. Scand. 81, 418–425.CrossRefGoogle Scholar
  45. Lek M., Karczewski K. J., Minikel E. V., Samocha K. E., Banks E., Fennell T. et al. 2016 Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lerner V., McCaffery P. J. and Ritsner M. S. 2016 Targeting retinoid receptors to treat schizophrenia: rationale and progress to date. CNS Drugs 30, 269–280.CrossRefGoogle Scholar
  47. Lidow M. S. 2003 Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain Res. Brain Res. Rev. 43, 70–84.CrossRefGoogle Scholar
  48. Lipton J. O. and Sahin M. 2014 The neurology of mTOR. Neuron 84, 275–291.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Malaspina A. and Michael-Titus A. T. 2008 Is the modulation of retinoid and retinoid-associated signaling a future therapeutic strategy in neurological trauma and neurodegeneration? J. Neurochem. 104, 584–595.PubMedGoogle Scholar
  50. Marsden P. A., Heng H. H., Scherer S. W., Stewart R. J., Hall A. V., Shi X. M. et al. 1993 Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J. Biol. Chem. 268, 17478–17488.PubMedGoogle Scholar
  51. McCullumsmith R. E., Gupta D., Beneyto M., Kreger E., Haroutunian V., Davis K. L. et al. 2007 Expression of transcripts for myelination-related genes in the anterior cingulate Cortex in schizophrenia. Schizophr. Res. 90, 15–27.CrossRefPubMedPubMedCentralGoogle Scholar
  52. McDonald C., Kenna P. and Larkin T. 1998 Retinitis pigmentosa and schizophrenia. Eur. Psychiatry 13, 423–426.CrossRefGoogle Scholar
  53. McGrath J., Saha S., Chant D. and Welham J. 2008 Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol. Rev. 30, 67–76.CrossRefGoogle Scholar
  54. Miyakawa T., Leiter L. M., Gerber D. J., Gainetdinov R. R., Sotnikova T. D., Zeng H. et al. 2003 Conditional calcineurin knockout mice exhibit multiple abnormal behaviours related to schizophrenia. Proc. Natl. Acad. Sci. USA 100, 8987–8992.CrossRefGoogle Scholar
  55. Mokhtari R. and Lachman H. M. 2016 The Major histocompatibility Complex (MHC) in schizophrenia: a review. J. Clin. Cell. Immunol. 7, 479.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nadalin S., Ristić S., Rebić J., Jengić S. V., Kapović M. and Buretić-Tomljanović A. 2017 The insertion/deletion polymorphism in the angiotensin-converting enzyme gene and nicotine dependence in schizophrenia patients. J. Neural Transm. 124, 511–518.CrossRefGoogle Scholar
  57. Naheed M. and Green B. 2001 Focus on clozapine. Curr. Med. Res. Opin. 17, 223–229.CrossRefGoogle Scholar
  58. Nakazawa T., Kikuchi M., Ishikawa M., Yamamori H., Nagayasu K., Matsumoto T. et al. 2017 Differential gene expression profiles in neurons generated from lymphoblastoid B-cell line-derived iPS cells from monozygotic twin cases with treatment-resistant schizophrenia and discordant responses to clozapine. Schizophr. Res. 181, 75–82.CrossRefGoogle Scholar
  59. Narayanaswamy J. C., Viswanath B. and Bada Math S. 2013 Schizophrenia and retinitis pigmentosa: are there mechanisms which blind insanity? Eur. Psychiatry 47, 95–96.Google Scholar
  60. Nourooz-Zadeh J., Tajaddini-Sarmadi J., Ling K. L. and Wolff S. P. 1996 Low-density lipoprotein is the major carrier of lipid hydroperoxides in plasma. Relevance to determination of total plasma lipid hydroperoxide concentrations. Biochem. J. 313, 781–786.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Pham X., Song G., Lao S., Goff L., Zhu H., Valle D. et al. 2016 The DPYSL2 gene connects mTOR and schizophrenia. Transl. Psychiatry 6, e933.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pilar S. 2008 Association study of endothelial nitric oxide synthase (NOS3) gene polymorphisms And schizophrenia. Schizophr. Res. 102, 1–3.Google Scholar
  63. Pitsikas N. 2016 The role of nitric oxide synthase inhibitors in schizophrenia. Curr. Med. Chem. 23, 2692–2705.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ponta H., Sherman L. and Herrlich P. A. 2003 CD44: from adhesion molecules to signalling regulators. Nat. Rev. Mol. Cell Biol. 4, 33–45.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Puljak L. and Kilic G. 2006 Emerging roles of chloride channels in human diseases. Biochim. Biophys. Acta. 1762, 404–413.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rioux L. and Arnold S. E. 2005 The expression of retinoic acid receptor alpha is increased in the granule cells of the dentate gyrus in schizophrenia. Psychiatry Res. 30, 13–21.CrossRefGoogle Scholar
  67. Ripke S., Neale B. M., Corvin A., Walters J. T., Farh K. H., Holmans P. A. et al. 2014 Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Rogers J. and Taylor M. J. 2017 Pharmacological agents to reduce readmissions in bipolar disorder. J. Psychopharmacol. (Oxf.). 31, 387–388.CrossRefGoogle Scholar
  69. Ruderfer D. M., Ripke S., McQuillin A., Boocock J., Stahl E. A., Pavlides J. M. W. et al. 2018 Genomic dissection of bipolar disorder and schizophrenia including 28 subphenotypes. Cell 173, 1705–1715.CrossRefGoogle Scholar
  70. Saito S., Takahashi N., Maeno N., Ito Y., Aleksic B., Usui H. et al. 2008 An association study of tachykinin receptor 3 gene with schizophrenia in the Japanese population. NeuroReport 19, 471–473.CrossRefGoogle Scholar
  71. Saleem Q., Dash D., Gandhi C., Kishore A., Benegal V., Sherrin T. et al. 2001 Association of CAG repeat loci on chromosome 22 with schizophrenia and bipolar disorder. Mol. Psychiatry 6, 694–700.CrossRefGoogle Scholar
  72. Sanders A. R., Drigalenko E. I., Duan J., Moy W., Freda J., Göring H. H. H. et al. 2017 Transcriptome sequencing study implicates immune-related genes differentially expressed in schizophrenia: new data and a meta-analysis. Transl. Psychiatry 7, e1093.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Serretti A. and Mandelli L. 2008 The genetics of bipolar disorder: genome ‘hot regions,’ genes, new potential candidates and future directions. Mol. Psychiatry  13, 742–771.CrossRefGoogle Scholar
  74. Shen W. W. 1999 A history of antipsychotic drug development. Compr. Psychiatry 40, 407–414.CrossRefGoogle Scholar
  75. Shinkai T., Ohmori O., Hori H. and Nakamura J. 2002 Allelic association of the neuronal nitric oxide synthase (NOS1) gene with schizophrenia. Mol. Psychiatry 19, 560–563.CrossRefGoogle Scholar
  76. Soudais C., Villartay D. J. P., Le D. F., Fischer A. and Lisowska-Grospierre B. 1993 Independent mutations of the human CD3-epsilon gene resulting in a T cell receptor/CD3 complex immunodeficiency. Nat. Genet. 3, 77–81.CrossRefGoogle Scholar
  77. Sušilová L., Češková E., Hampel D., Sušil A. and Šim\(\mathring{{\rm u}}\)nek J. 2017 Changes in BMI in hospitalized patients during treatment with antipsychotics, depending on gender and other factors. Int. J. Psychiatry Clin. Pract. 21, 112–117.Google Scholar
  78. Takahashi S., Cui Y. H., Han Y. H., Fagerness J. A., Galloway B., Shen Y. C. et al. 2008 Association of SNPs and haplotypes in APOL1, 2 and 4 with schizophrenia. Schizophr. Res. 104, 153–164.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Tang R., Zhao X., Fang C., Tang W., Huang K., Wang L. et al. 2008 Investigation of variants in the promoter region of PIK3C3 in schizophrenia. Neurosci. Lett. 437, 42–44.CrossRefGoogle Scholar
  80. Tebbenkamp A. T., Willsey A. J., State M. W. and Sestan N. 2014 The developmental transcriptome of the human brain: implications for neurodevelopmental disorders. Curr. Opin. Neurol. 27, 149.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Viswanath B., Rao N. P., Narayanaswamy J. C., Sivakumar P. T., Kandasamy A., Kesavan M. et al. 2018 Discovery biology of neuropsychiatric syndromes (DBNS): a center for integrating clinical medicine and basic science. BMC Psychiatry 18, 106.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wang L., Zhou K., Fu Z., Yu D., Huang H., Zang X. et al. 2017 Brain development and Akt signaling: the crossroads of signaling pathway and neurodevelopmental diseases. J. Mol. Neurosci. 61, 379–384.CrossRefGoogle Scholar
  83. Wass C., Svensson L., Fejgin K., Pålsson E., Archer T., Engel J. A. et al. 2008 Nitric oxide synthase inhibition attenuates phencyclidine-induced disruption of cognitive flexibility. Pharmacol. Biochem. Behav. 89, 352–359.CrossRefGoogle Scholar
  84. Wong M. L., Dong C., Maestre-Mesa J. and Licinio J. 2008 Polymorphisms in inflammation-related genes are associated with susceptibility to Major depression and antidepressant response. Mol. Psychiatry 13, 800–812.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Yates A., Akanni W., Amode M. R., Barrell D., Billis K., Carvalho-Silva D. et al. 2016 Ensembl 2016. Nucleic Acids Res. 44, D710–D716.CrossRefGoogle Scholar
  86. Yin X., Lin Y., Shen C., Wang L., Zuo X., Zheng X. et al. 2017 Integration of expression quantitative trait loci and pleiotropy identifies a novel psoriasis susceptibility gene, PTPN1. J. Gene Med. 19, 1–2.CrossRefGoogle Scholar
  87. Zammit S., Lewis S., Gunnell D. and Smith G. D. 2007 Schizophrenia and neural tube defects: comparisons from an epidemiological perspective. Schizophr. Bull. 33, 853–858.CrossRefGoogle Scholar
  88. Zelinger L., Banin E., Obolensky A., Mizrahi-Meissonnier L., Beryozkin A., Bandah-Rozenfeld D. et al. 2011 A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, Is associated with autosomal-recessive retinitis Pigmentosa in Ashkenazi Jews. Am. J. Hum. Genet. 88, 207–215.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zhang C., Fang X., Yao P., Mao Y., Cai J., Zhang Y. et al. 2017 Metabolic adverse effects of olanzapine on cognitive dysfunction: a possible relationship between BDNF and TNF-alpha. Psychoneuroendocrinology 81, 138–143.CrossRefGoogle Scholar
  90. Zhou M., Li W., Huang S., Song J., Kim J. Y., Tian X. et al. 2013 mTOR inhibition ameliorates cognitive and affective deficits caused by Disc1 knockdown in adult-born dentate granule neurons. Neuron 77, 647–654.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • S. Anirudh Chellappa
    • 1
    • 2
  • Ankit Kumar Pathak
    • 3
  • Prashant Sinha
    • 3
  • ASHWIN K. Jainarayanan
    • 4
  • Sanjeev Jain
    • 2
  • Samir K. Brahmachari
    • 1
    • 3
    • 5
    • 6
    Email author
  1. 1.Centre for Open Innovation – Indian Centre for Social Transformation (ICST)BengaluruIndia
  2. 2.Department of PsychiatryNational Institute of Mental Health and Neurosciences (NIMHANS)BengaluruIndia
  3. 3.Cluster Innovation CentreUniversity of DelhiDelhiIndia
  4. 4.Indian Institute of Science, Education and ResearchMohaliIndia
  5. 5.Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB)New DelhiIndia
  6. 6.Academy of Scientific and Innovative Research (AcSIR)New DelhiIndia

Personalised recommendations