Advertisement

Journal of Genetics

, 98:52 | Cite as

Molecular characterization and expression pattern analysis of a novel stress-responsive gene ‘BeSNAC1’ in Bambusa emeiensis

  • Naseem Samo
  • Muhammad Imran
  • Hu ShanglianEmail author
  • Luo Xuegang
  • Ying Cao
  • Huang Yan
Research Article
  • 58 Downloads

Abstract

NAC transcription factors (TFs) are master regulators of environmental stresses exerting a crucial role in plant growth and development. However, the studies on NAC TFs from Bambusa emeiensis are scarce. In this investigation, a novel gene from B. emeiensis encoding NAC protein was cloned and characterized. The gene was isolated based on the amino acid sequence data of stress-responsive SNAC1 of rice, named ‘BeSNAC1 (accession no. MG763922)’. The full-length sequence of 1681 bp was found to contain an open-reading frame of 912 bp that encode a protein of 303 amino-acid residues. The multiple protein sequence alignments unveiled that BeSNAC1 contains a typical NAC domain. Additionally, the phylogenetic analysis showed that the corresponding protein belonged to the SNAC group, as it cladded with SNAC1, HvSNAC1, TaNAC2, SbSNAC1 and ZmSNAC1 proteins. Transactivation and subcellular localization assay disclosed that BeSNAC1 is a transcriptional activator localized in the cell nucleus. Moreover, the time-dependent expression pattern of BeSNAC1 was profiled under abscisic acid (ABA), polyethylene glycol 6000 (PEG-6000), NaCl, \(\hbox {H}_{2}\hbox {O}_{2}\) and \(\hbox {Na}_{2}\hbox {SO}_{4}\) treatments via a quantitative real-time polymerase chain reaction. The results revealed that the expression of BeSNAC1 was significantly upregulated in all treatments, a significant difference was observed under \(\hbox {H}_{2}\hbox {O}_{2}\), NaCl and ABA (\(P < 0.001\)) and PEG and \(\hbox {Na}_{2}\hbox {SO}_{4}\) (\(P < 0.01\)) treatments, respectively. Conclusively, our findings provide evidence that ‘BeSNAC1’ is a nuclear protein that might act as part of the transcription regulation complex and is involved in the ABA signalling pathway and abiotic stress tolerance mechanisms in B. emeiensis.

Keywords

abiotic stress cloning bioinformatics transactivation nuclear localization expression analysis Bambusa emeiensis 

Notes

Acknowledgements

This research was funded by the Department of  Science and Technology,  Sichuan Province, China, project nos. 2016NYZ0038 and 2017NZ0008.

References

  1. Aida M. 1997 Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9, 841–857.CrossRefGoogle Scholar
  2. Al Abdallat A. M., Ayad J. Y., Abu Elenein J. M., Al Ajlouni Z. and Harwood W. A. 2014 Overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley (Hordeum vulgare L.). Mol. Breed. 33, 401–414.Google Scholar
  3. An X., Liao Y., Zhang J., Dai L., Zhang N., Wang B. et al. 2015 Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance. Plant Growth Regul. 76, 211–223.CrossRefGoogle Scholar
  4. Cenci A., Guignon V., Roux N. and Rouard M. 2014 Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots. Plant Mol. Biol. 85, 63–80.CrossRefGoogle Scholar
  5. Chen Y., Qiu K., Kuai B. and Ding Y. 2011 Identification of an NAP-like transcription factor BeNAC1 regulating leaf senescence in bamboo (B. emeiensis ‘Viridiflavus’). Physiol. Plant 142, 361–371.CrossRefGoogle Scholar
  6. Cramer G. R., Urano K., Delrot S., Pezzotti M. and Shinozaki K. 2011 Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol. 11, 163.CrossRefGoogle Scholar
  7. Duval M., Hsieh T. F., Kim S. Y. and Thomas T. L. 2002 Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol. Biol. 50, 237–248.CrossRefGoogle Scholar
  8. Fang Y., You J., Xie K., Xie W. and Xiong L. 2008 Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol. Genet. Genomics 280, 547–563.CrossRefGoogle Scholar
  9. Goyal A. K., Ghosh P. K., Dubey A. K. and Sen A. 2012 Inventorying bamboo biodiversity of North Bengal : a case study. Int. J. Fund. Appl. Sci. 1, 7–10.Google Scholar
  10. He X. J., Mu R. L., Cao W. H., Zhang Z. G., Zhang J. S. and Chen S. Y. 2005 AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J. 44, 903–916.CrossRefGoogle Scholar
  11. Hu H., Dai M., Yao J., Xiao B., Li X., Zhang Q. et al. 2006 Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. USA 103, 12987–12992.CrossRefGoogle Scholar
  12. Hu H., You J., Fang Y., Zhu X., Qi Z. and Xiong L. 2008 Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol. Biol. 67, 169–181.CrossRefGoogle Scholar
  13. Huang Q., Wang Y., Li B., Chang J., Chen M., Li K. et al. 2015 TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol. 15, 268.CrossRefGoogle Scholar
  14. Jeong J. S., Kim Y. S., Baek K. H., Jung H., Ha S. H., Do Choi Y. et al. 2010 Root-Specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol. 153, 185–197.CrossRefGoogle Scholar
  15. Jeong J. S., Kim Y. S., Redillas M. C. F. R., Jang G., Jung H., Bang S. W. et al. 2013 OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol. J. 11, 101–114.CrossRefGoogle Scholar
  16. Kikuchi K., Ueguchi-Tanaka M., Yoshida K. T., Nagato Y., Matsusoka M. and Hirano H. Y. 2000 Molecular analysis of the NAC gene family in rice. Mol. Gen. Genet. 262, 1047–1051.CrossRefGoogle Scholar
  17. Kumar S., Stecher G. and Tamura K. 2016 MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.CrossRefGoogle Scholar
  18. Lata C., Muthamilarasan M. and Prasad M. 2015 Elucidation of abiotic stress signaling in plants. (ed. G. K. Pandey), pp. 195–225, vol. 2. Springer.Google Scholar
  19. Lee D. K., Chung P. J., Jeong J. S., Jang G., Bang S. W., Jung H. et al. 2017 The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol. J. 15, 754–764.CrossRefGoogle Scholar
  20. Liu G., Li X., Jin S., Liu X., Zhu L., Nie Y. et al. 2014 Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9, e86895.CrossRefGoogle Scholar
  21. Livak K. J. and Schmittgen T. D. 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2-\({}^{\Delta \Delta \text{ CT }}\) method. Methods 25, 402–408.Google Scholar
  22. Lu M., Ying S., Zhang D. F., Shi Y. S., Song Y. C., Wang T. Y. et al. 2012 A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Rep. 31, 1701–1711.CrossRefGoogle Scholar
  23. Lu M., Zhang D. F., Shi Y. S., Song Y. C., Wang T. Y. and Li Y. 2013 Expression of SbSNAC1, a NAC transcription factor from sorghum, confers drought tolerance to transgenic Arabidopsis. Plant Cell Tissue Organ Cult. 115, 443–455.CrossRefGoogle Scholar
  24. Ma N. N., Zuo Y. Q., Liang X. Q., Yin B., Wang G. D. and Meng Q. W. 2013 The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato. Physiol. Plant 149, 474–486.CrossRefGoogle Scholar
  25. Mao X., Zhang H., Qian X., Li A., Zhao G. and Jing R. 2012 TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J. Exp. Bot. 63, 2933–2946.CrossRefGoogle Scholar
  26. Mao X., Chen S., Li A., Zhai C. and Jing R. 2014 Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS One 9, e84359.CrossRefGoogle Scholar
  27. Nakashima K., Tran L. S. P., Van Nguyen D., Fujita M., Maruyama K., Todaka D. et al. 2007 Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 51, 617–630.CrossRefGoogle Scholar
  28. Nakashima K., Takasaki H., Mizoi J., Shinozaki K. and Yamaguchi-Shinozaki K. 2012 NAC transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta. 1819, 97–103.CrossRefGoogle Scholar
  29. Nuruzzaman M., Manimekalai R., Sharoni A. M., Satoh K., Kondoh H., Ooka H. et al. 2010 Genome-wide analysis of NAC transcription factor family in rice. Gene 465, 30–44.CrossRefGoogle Scholar
  30. Nuruzzaman M., Sharoni A. M. and Kikuchi S. 2013 Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front. Microbiol. 4, 248.CrossRefGoogle Scholar
  31. Olsen A. N., Ernst H. A., Leggio L. L. and Skriver K. 2005 DNA-binding specificity and molecular functions of NAC transcription factors. Plant Sci. 169, 785–797.CrossRefGoogle Scholar
  32. Ooka H., Satoh K., Doi K., Nagata T., Otomo Y., Murakami K. et al. 2003 Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 10, 239–247.CrossRefGoogle Scholar
  33. Puranik S., Sahu P. P., Srinivastava P. S. and Prasad M. 2012 NAC proteins: regulation and role in stress tolerance. Trends Plant Sci. 17, 369–381.Google Scholar
  34. Redillas M. C. F. R., Jeong J. S., Kim Y. S., Jung H., Bang S. W., Choi Y. D. et al. 2012 The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol. J. 10, 792–805.CrossRefGoogle Scholar
  35. Saad A. S. I., Li X., Li H. P., Huang T., Gao C. S., Guo M. W. et al. 2013 A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci. 203, 33–40.CrossRefGoogle Scholar
  36. Sablowski R. W. M. and Meyerowitz E. M. 1998 A homolog of no apical meristem is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92, 93–103.CrossRefGoogle Scholar
  37. Shen J., Lv B., Luo L., He J., Mao C., Xi D. et al. 2017 The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci. Rep. 7, 40641.CrossRefGoogle Scholar
  38. Singh D. and Laxmi A. 2015 Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front Plant Sci. 6, 1–11.Google Scholar
  39. Souer E., Van Houwelingen A., Kloos D., Mol J. and Koes R. 1996 The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85, 159–170.CrossRefGoogle Scholar
  40. Takasaki H., Maruyama K., Kidokoro S., Ito Y., Fujita Y., Shinozaki K. et al. 2010 The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol. Genet. Genomics 284, 173–183.CrossRefGoogle Scholar
  41. Tang Y., Liu M., Gao S., Zhang Z., Zhao X., Zhao C. et al. 2012 Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol. Plant 144, 210–224.CrossRefGoogle Scholar
  42. Wang C., Deng P., Chen L., Wang X., Ma H., Hu W. et al. 2013 A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One 8, e65120.Google Scholar
  43. Wang X., Zeng J., Li Y., Rong X., Sun J., Sun T. et al. 2015 Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci. 6, 1–14.Google Scholar
  44. Wu A., Allu A. D., Garapati P., Siddiqui H., Dortay H., Zanor M.-I. et al. 2012 JUNGBRUNNEN1, a reactive oxygen Species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24, 482–506.CrossRefGoogle Scholar
  45. Wu Y., Deng Z., Lai J., Zhang Y., Yang C., Yin B. et al. 2009 Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res. 19, 1279.CrossRefGoogle Scholar
  46. Xie Q., Frugis G., Colgan D. and Chua N. H. 2000 Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14, 3024–3036.CrossRefGoogle Scholar
  47. Xu Z., Wang C., Xue F., Zhang H. and Ji W. 2015 Wheat NAC transcription factor TaNAC29 is involved in response to salt stress. Plant Physiol. Biochem. 96, 356–363.CrossRefGoogle Scholar
  48. Xue G. P., Way H. M., Richardson T., Drenth J., Joyce P. A. and McIntyre C. L. 2011 Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol. Plant 4, 697–712.CrossRefGoogle Scholar
  49. Yang S.-D., Seo P. J., Yoon H.-K. and Park C.-M. 2011 The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell 23, 2155–2168.CrossRefGoogle Scholar
  50. Yeasmin L., Ali M. N., Gantait S. and Chakraborty S. 2015 Bamboo: an overview on its genetic diversity and characterization. 3 Biotech. 5, 1–11.CrossRefGoogle Scholar
  51. Yokotani N., Ichikawa T., Kondou Y., Matsui M., Hirochika H., Iwabuchi M. et al. 2009 Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229, 1065–1075.CrossRefGoogle Scholar
  52. Zhang L. L., Zhang L. L., Xia C., Zhao G., Jia J. and Kong X. 2016 The novel wheat transcription factor TaNAC47 enhances multiple abiotic stress tolerances in transgenic plants. Front Plant Sci. 6, 1174.PubMedPubMedCentralGoogle Scholar
  53. Zheng X., Chen B., Lu G. and Han B. 2009 Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem. Biophys. Res. Commun. 379, 985–989.CrossRefGoogle Scholar
  54. Zhong R., Demura T. and Ye Z.-H. 2006 SND1, a NAC domain transcription factor, Is a Key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18, 3158–3170.CrossRefGoogle Scholar
  55. Zhong R., Richardson E. A. and Ye Z. H. 2007 Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225, 1603–1611.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Plant Cell Engineering Laboratory, School of Life Science and EngineeringSouthwest University of Science and TechnologyMain YangPeople’s Republic of China

Personalised recommendations