Advertisement

Journal of Genetics

, 98:45 | Cite as

Minor alleles of genetic variants in second heart field increase the risk of hypoplastic right heart syndrome

  • Enshi Wang
  • Yu Nie
  • Xuesong Fan
  • Zhe Zheng
  • Haiyong Gu
  • Hao Zhang
  • Shengshou HuEmail author
Research Article
  • 45 Downloads

Abstract

Hypoplastic right heart syndrome (HRHS) is characterized by hypoplastic right ventricle (RV); Numerous transcriptional cascades in the second heart field (SHF) regulate RV development. The relationship of SHF gene variants with human HRHS remains unknown. The whole lengths of 17 SHF genes were sequenced in 16 HRHS, and the selected single-nucleotide variants (SNVs) were then genotyped in HRHS, other congenital heart disease (CHD) and healthy control. Luciferase assay was performed to verify the effect of FOXC2: rs34221221 \(\hbox {A}{>}\hbox {G}\) and TBX20: rs59854940 \(\hbox {C}{>}\hbox {G}\) at the transcription level. There were 151 (12.86%) novel SNVs after sequence analysis, of which three were in exons (one was synonymous SNV and two were nonsynonymous SNVs), two in promoter, and most SNVs (89.95%) were in intronic regions. Genotype analyses revealed that the minor alleles of FOXC2: rs34221221 \(\hbox {A}{>}\hbox {G}\) and TBX20: rs59854940 \(\hbox {C}{>}\hbox {G}\) could increase HRHS risk (\(P{<}0.05\)), but not in other CHD or healthy control. Luciferase assay showed that the minor G allele in rs34221221 significantly increased FOXC2 transcription while in rs59854940 it decreased TBX20 transcription significantly. Novel variants of SHF gene associated with HRHS were identified. Minor alleles in two variants from FOXC2 and TBX20 could increase the risk of HRHS.

Keywords

hypoplastic right heart syndrome single-nucleotide variant second heart field transcription factor congenital heart disease 

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant no. 81400242, 81430006 and 81441010) and the National Basic Research Development Program in China (Program 973: 2010CB529505).

Supplementary material

12041_2019_1092_MOESM1_ESM.docx (191 kb)
Supplementary material 1 (docx 191 KB)

References

  1. Anderson K. R. and Lie J. T. 1979 The right ventricular myocardium in Ebstein’s anomaly: a morphometric histopathologic study. Mayo Clin. Proc. 54, 181–184.PubMedGoogle Scholar
  2. Anderson K. R., Zuberbuhler J. R., Anderson R. H., Becker A. E. and Lie J. T. 1979 Morphologic spectrum of Ebstein’s anomaly of the heart: a review. Mayo Clin. Proc. 54, 174–180.PubMedGoogle Scholar
  3. Buckingham M., Meilhac S. and Zaffran S. 2005. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 6, 826–837.CrossRefGoogle Scholar
  4. Cai C. L., Liang X., Shi Y., Chu P. H., Pfaff S. L., Chen J. et al. 2003 Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 5, 877–889.CrossRefGoogle Scholar
  5. Chessa M., Redaelli S., Masszi G., Iascone M. and Carminati M. 2000 Familial occurrence of isolated right ventricular hypoplasia. Am. J. Med. Genet. 90, 356–357.CrossRefGoogle Scholar
  6. Dai Y. S. 2002 The basic helix-loop-helix factor, HAND2, functions as a transcriptional activator by binding to E-boxes as a heterodimer. J. Biol. Chem. 277, 12604–12612.CrossRefGoogle Scholar
  7. Dodou E. 2004 Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development 131, 3931–3942.CrossRefGoogle Scholar
  8. Fahed A. C., Gelb B. D., Seidman J. G. and Seidman C. E. 2013 Genetics of congenital heart disease: the glass half empty. Circ. Res. 112, 707–720.CrossRefGoogle Scholar
  9. Gottlieb P. D., Pierce S. A., Sims R. J., Yamagishi H., Weihe E. K., Harriss J. V. et al. 2002 Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat. Genet. 31, 25–32.CrossRefGoogle Scholar
  10. Grossfeld P. D., Lucas V. W., Sklansky M. S., Kashani I. A. and Rothman A. 1997 Familial occurrence of pulmonary atresia with intact ventricular septum. Am. J. Med. Genet. 72, 294–296.CrossRefGoogle Scholar
  11. Hanley F. L., Sade R. M., Freedom R. M., Blackstone E. H. and Kirklin J. W. 1993 Outcomes in critically ill neonates with pulmonary stenosis and intact ventricular septum: a multiinstitutional study. Congenital Heart Surgeons Society. J. Am. Coll. Cardiol. 22, 183–192.CrossRefGoogle Scholar
  12. Hoffman J. I. and Kaplan S. 2002 The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–1900.CrossRefGoogle Scholar
  13. Ilagan R., Abu-Issa R., Brown D., Yang Y. P., Jiao K., Schwartz R. J. et al. 2006 Fgf8 is required for anterior heart field development. Development 133, 2435–2445.CrossRefGoogle Scholar
  14. Inman K. E., Caiaffa C. D., Melton K. R., Sandell L. L., Achilleos A., Kume T. et al. 2018 Foxc2 is required for proper cardiac neural crest cell migration, outflow tract septation, and ventricle expansion. Dev. Dyn. 247, 1286–1296.CrossRefGoogle Scholar
  15. Kelly R. G., Brown N. A. and Buckingham M. E. 2001 The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev. Cell 1, 435–440.CrossRefGoogle Scholar
  16. Khoury G. H., Gilbert E. F., Chang C. H. and Schmidt R. 1969 The hypoplastic right heart complex. Clinical, hemodynamic, pathologic and surgical considerations. Am. J. Cardiol. 23, 792–800.CrossRefGoogle Scholar
  17. Lin L., Bu L., Cai C. L., Zhang X. and Evans S. 2006 Isl1 is upstream of sonic hedgehog in a pathway required for cardiac morphogenesis. Dev. Biol. 295, 756–763.CrossRefGoogle Scholar
  18. Marguerie A., Bajolle F., Zaffran S., Brown N. A., Dickson C., Buckingham M. E. et al. 2006 Congenital heart defects in Fgfr2-IIIb and Fgf10 mutant mice. Cardiovasc. Res. 71, 50–60.CrossRefGoogle Scholar
  19. McDaniell R., Lee B. K., Song L., Liu Z., Boyle A. P., Erdos M. R. et al. 2010 Heritable individual-specific and allele-specific chromatin signatures in humans. Science 328, 235–239.CrossRefGoogle Scholar
  20. Mjaatvedt C. H., Nakaoka T., Moreno-Rodriguez R., Norris R. A., Kern M. J., Eisenberg C. A. et al. 2001 The outflow tract of the heart is recruited from a novel heart-forming field. Dev. Biol. 238, 97–109.CrossRefGoogle Scholar
  21. Park E. J., Ogden L. A., Talbot A., Evans S., Cai C. L., Black B. L. et al. 2006 Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development 133, 2419–2433.CrossRefGoogle Scholar
  22. Phan D., Rasmussen T. L., Nakagawa O., McAnally J., Gottlieb P. D., Tucker P. W. et al. 2005 BOP, a regulator of right ventricular heart development, is a direct transcriptional target of MEF2C in the developing heart. Development 132, 2669–2678.CrossRefGoogle Scholar
  23. Pierpont M. E., Basson C. T., Benson Jr D. W., Gelb B. D., Giglia T. M., Goldmuntz E. et al. 2007 Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115, 3015–3038.CrossRefGoogle Scholar
  24. Reamon-Buettner S. M., Ciribilli Y., Traverso I., Kuhls B., Inga A., Borlak J. 2009 A functional genetic study identifies HAND1 mutations in septation defects of the human heart. Hum. Mol. Genet. 18, 3567–3578.CrossRefGoogle Scholar
  25. Seo S. and Kume T. 2006 Forkhead transcription factors, Foxc1 and Foxc2, are required for the morphogenesis of the cardiac outflow tract. Dev. Biol. 296, 421–436.CrossRefGoogle Scholar
  26. Seo S., Fujita H., Nakano A., Kang M., Duarte A. and Kume T. 2006 The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. Dev. Biol. 294, 458–470.CrossRefGoogle Scholar
  27. Srivastava D. 2006 Making or breaking the heart: from lineage determination to morphogenesis. Cell 126, 1037–1048.CrossRefGoogle Scholar
  28. Srivastava D., Cserjesi P. and Olson E. N. 1995 A subclass of bHLH proteins required for cardiac morphogenesis. Science 270, 1995–1999.CrossRefGoogle Scholar
  29. Srivastava D., Thomas T., Lin Q., Kirby M. L., Brown D. and Olson E. N. 1997 Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat. Genet. 16, 154–160.CrossRefGoogle Scholar
  30. Stennard F. A. and Harvey R. P. 2005 T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development 132, 4897–4910.CrossRefGoogle Scholar
  31. Stennard F. A., Costa M. W., Elliott D. A., Rankin S., Haast S. J., Lai D. et al. 2003 Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Dev. Biol. 262, 206–224.CrossRefGoogle Scholar
  32. Takeuchi J. K. 2005 Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development. Development 132, 2463–2474.CrossRefGoogle Scholar
  33. Topf A., Griffin H. R., Glen E., Soemedi R., Brown D. L., Hall D. et al. 2014 Functionally significant, rare transcription factor variants in tetralogy of Fallot. PLoS One 9, e95453.CrossRefGoogle Scholar
  34. Tsuchihashi T., Maeda J., Shin C. H., Ivey K. N., Black B. L., Olson E. N. et al. 2011 Hand2 function in second heart field progenitors is essential for cardiogenesis. Dev. Biol. 351, 62–69.CrossRefGoogle Scholar
  35. van der Linde D., Konings E. E., Slager M. A., Witsenburg M., Helbing W. A., Takkenberg J. J. et al. 2011 Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 58, 2241–2247.CrossRefGoogle Scholar
  36. Van Praagh R. D. I., Gordon D., Wright G. B. and Van Praagh S. 1982 Ventricular diagnosis and designation. In Paediatric cardiology (ed. M. J. Godman), pp. 153. Churchill Livingstone, Edinburgh.Google Scholar
  37. Vong L., Bi W., O’Connor-Halligan K. E., Li C., Cserjesi P. and Schwarz J. J. 2006 MEF2C is required for the normal allocation of cells between the ventricular and sinoatrial precursors of the primary heart field. Dev. Dynam. 235, 1809–1821.CrossRefGoogle Scholar
  38. Waldo K. L., Kumiski D. H., Wallis K. T., Stadt H. A., Hutson M. R., Platt D. H. et al. 2001 Conotruncal myocardium arises from a secondary heart field. Development 128, 3179–3188.PubMedGoogle Scholar
  39. Xiong F., Li Q., Zhang C., Chen Y., Li P., Wei X. et al. 2013 Analyses of GATA4, NKX2.5, and TFAP2B genes in subjects from southern China with sporadic congenital heart disease. Cardiovas. Pathol. 22, 141–145.CrossRefGoogle Scholar
  40. Xu H. and Baldini A. 2007 Genetic pathways to mammalian heart development: Recent progress from manipulation of the mouse genome. Sem. Cell Dev. Biol. 18, 77–83.CrossRefGoogle Scholar
  41. Yamagishi H., Maeda J., Hu T., McAnally J., Conway S. J., Kume T. et al. 2003 Tbx1 is regulated by tissue-specific forkhead proteins through a common sonic hedgehog-responsive enhancer. Genes Dev. 17, 269–281.CrossRefGoogle Scholar
  42. Yu S., Shao L., Kilbride H. and Zwick D. L. 2010 Haploinsufficiencies of FOXF1 and FOXC2 genes associated with lethal alveolar capillary dysplasia and congenital heart disease. Am. J. Med. Genet. A. 152A, 1257–1262.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Enshi Wang
    • 1
    • 2
  • Yu Nie
    • 2
  • Xuesong Fan
    • 3
  • Zhe Zheng
    • 1
  • Haiyong Gu
    • 1
  • Hao Zhang
    • 1
    • 2
  • Shengshou Hu
    • 1
    • 2
    Email author
  1. 1.Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingPeople’s Republic of China
  2. 2.State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingPeople’s Republic of China
  3. 3.Department of Clinical Laboratory Center, Beijing An Zhen Hospital, Capital Medical UniversityBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijingPeople’s Republic of China

Personalised recommendations