Journal of Genetics

, 98:42 | Cite as

Clinical presentation and genetic profiles of Chinese patients with velocardiofacial syndrome in a large referral centre

  • Dandan Wu
  • Yang Chen
  • Qiming Chen
  • Guoming WangEmail author
  • Xiaofeng Xu
  • A. Peng
  • Jin Hao
  • Jinguang HeEmail author
  • Li HuangEmail author
  • Jiewen DaiEmail author
Research Article


Diagnosis and treatment of velocardiofacial syndrome (VCFS) with variable genotypes and phenotypes are considered to be very complicated. Establishing an exact correlation between the phenotypes and genotypes of VCFS is still a challenging. In this paper, 88 Chinese VCFS patients were divided into five groups based on palatal anomalies and one or two of other four common phenotypes, and copy number variations (CNVs) were detected using multiplex ligation-dependent probe amplification (MLPA), array comparative genomic hybridization (aCGH) and quantitative polymerase chain reaction. The findings showed that palatal anomalies and characteristic malformation of face were important indicators for 22q11.2 microdeletion, and there was difference in the phenotypic spectrum between the duplication and deletion of 22q11.2. MLPA was a highly cost-effective, sensitive and preferred method for patients with 22q11.2 deletion or duplication. Our results also firstly reported that all three patients who simultaneously exhibited palatal anomalies and cognitive disorder, without other phenotypes, have Top3b duplication, which strongly suggested that Top3b may be a pathogenic gene for these patients. Further, the findings showed that patients with palatal anomalies and congenital heart disease or immune deficiency, with or without other uncommon phenotypes, exhibited heterogeneity in CNVs, including 4q34.1-qter, 6q25.3, 4q23, Xp11.4, 13q21.1, 17q23.2, 7p21.3, 2p11.2, 11q24.3 and 16q23.3, and some possible pathogenic genes, including BCOR, PRR20A, TBX2, SMYD1, KLKB1 and TULP4 have been suggested. For these patients, aCGH, whole genomic sequencing, combined with references and phenomics database to find pathogenic gene, may be choices of priority. Taking these findings together, we offered an alternative method for diagnosis of Chinese VCFS patients based on this phenotypic strategy.


diagnosis Chinese patients velocardiofacial syndrome patients phenotypic strategy 



This work was supported by the Interdisciplinary Program of Shanghai Jiaotong University (nos. YG2016MS08 and YG2016QN11), the National Key Research and Development Program of China (no. 2016YFC1000502), the National Natural Science Foundation of China (no. 81300842) and Morning Star Rewarding Fund of Shanghai Jiaotong University.

Supplementary material

12041_2019_1090_MOESM1_ESM.doc (38.1 mb)
Supplementary material 1 (doc 38996 KB)


  1. Chengle H., Kaihong D. and Fuzhi B. 2010 Association analysis of the poliovirus receptor related-2 gene in patients with nonsyndromic cleft lip with or without cleft palate. DNA Cell Biol.  29, 681–685.CrossRefGoogle Scholar
  2. Davoody A., Chen I. P., Nanda R., Uribe F. and Reichenberger E. J. 2012 Oculofaciocardiodental syndrome: a rare case and review of the literature. Cleft Palate Craniofac. J.  49, e55–e60.CrossRefGoogle Scholar
  3. Doughan M., Spellmon N., Li C. and Yang Z. 2016 SMYD proteins in immunity: dawning of a new era. AIMS Biophys.  3, 450–455.CrossRefGoogle Scholar
  4. Ensenauer R. E., Adeyinka A., Flynn H. C., Michels V. V., Lindor N. M., Dawson D. B. et al. 2003 Microduplication 22q11.2, an emerging syndrome: clinical, cytogenetic, and molecular analysis of thirteen patients. Am. J. Hum. Genet.  73, 1027–1040.CrossRefGoogle Scholar
  5. Fava C., Danese E., Montagnana M., Sjogren M., Almgren P., Guidi G. C. et al. 2011 A variant upstream of the CDH13 adiponectin receptor gene and metabolic syndrome in Swedes. Am. J. Cardiol.  108, 1432–1437.CrossRefGoogle Scholar
  6. Girirajan S., Rosenfeld J. A., Coe B. P., Parikh S., Friedman N., Goldstein A. et al. 2012 Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N. Engl. J. Med.  367, 1321–1331.CrossRefGoogle Scholar
  7. Gittleman H. R., Merkulova A., Alhalabi O., Stavrou E. X., Veigl M. L., Barnholtz-Sloan J. S. et al. 2016 A cross-sectional study of KLKB1 and PRCP polymorphisms in patient samples with cardiovascular disease. Front. Med. (Lausanne)  3, 17.Google Scholar
  8. Guo T., Chung J. H., Wang T., McDonald-McGinn D. M., Kates W. R., Hawula W. et al. 2015 Histone modifier genes Alter conotruncal heart phenotypes in 22q11.2 deletion syndrome. Am. J. Hum. Genet.  97, 869–877.CrossRefGoogle Scholar
  9. Hood R. L., Schenkel L. C., Nikkel S. M., Ainsworth P. J., Pare G., Boycott K. M. et al. 2016 The defining DNA methylation signature of Floating–Harbor syndrome. Sci. Rep.  6, 38803.CrossRefGoogle Scholar
  10. Horn D., Chyrek M., Kleier S., Luttgen S., Bolz H., Hinkel G. K. et al. 2005 Novel mutations in BCOR in three patients with oculo-facio-cardio-dental syndrome, but none in Lenz microphthalmia syndrome. Eur. J. Hum. Genet.  13, 563–569.CrossRefGoogle Scholar
  11. Jalali G. R., Vorstman J. A., Errami A., Vijzelaar R., Biegel J., Shaikh T. et al. 2008 Detailed analysis of 22q11.2 with a high density MLPA probe set. Hum. Mutat.  29, 433–440.CrossRefGoogle Scholar
  12. Jussila M., Aalto A. J., Sanz Navarro M., Shirokova V., Balic A., Kallonen A. et al. 2015 Suppression of epithelial differentiation by Foxi3 is essential for molar crown patterning. Development  142, 3954–3963.CrossRefGoogle Scholar
  13. Kaufman C. S., Genovese A. and Butler M. G. 2016 Deletion of TOP3B is associated with cognitive impairment and facial dysmorphism. Cytogenet. Genome Res.  150, 106–111.CrossRefGoogle Scholar
  14. Kobrynski L. J. and Sullivan K. E. 2007 Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet  370, 1443–1452.CrossRefGoogle Scholar
  15. Kohler S., Schulz M. H., Krawitz P., Bauer S., Dolken S., Ott C. E. et al. 2009 Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am. J. Hum. Genet.  85, 457–464.CrossRefGoogle Scholar
  16. Kohler S., Vasilevsky N. A., Engelstad M., Foster E., McMurry J., Ayme S. et al. 2017 The human phenotype ontology in 2017. Nucleic Acids Res.  45, D865–D876.CrossRefGoogle Scholar
  17. Kruszka P., Addissie Y. A., McGinn D. E., Porras A. R., Biggs E., Share M. et al. 2017 22q11.2 deletion syndrome in diverse populations. Am. J. Med. Genet. A.  173, 879–888.CrossRefGoogle Scholar
  18. Kwan K. Y. and Wang J. C. 2001 Mice lacking DNA topoisomerase IIIbeta develop to maturity but show a reduced mean lifespan. Proc. Natl. Acad. Sci. USA  98, 5717–5721.CrossRefGoogle Scholar
  19. Kwan K. Y., Moens P. B. and Wang J. C. 2003 Infertility and aneuploidy in mice lacking a type IA DNA topoisomerase III beta. Proc. Natl. Acad. Sci. USA  100, 2526–2531.CrossRefGoogle Scholar
  20. Kwan K. Y., Greenwald R. J., Mohanty S., Sharpe A. H., Shaw A. C. and Wang J. C. 2007 Development of autoimmunity in mice lacking DNA topoisomerase 3beta. Proc. Natl. Acad. Sci. USA  104, 9242–9247.CrossRefGoogle Scholar
  21. Lopez-Rivera E., Liu Y. P., Verbitsky M., Anderson B. R., Capone V. P., Otto E. A. et al. 2017 Genetic drivers of kidney defects in the DiGeorge syndrome. N. Engl. J. Med.  376, 742–754.CrossRefGoogle Scholar
  22. McDonald-McGinn D. M., Sullivan K. E., Marino B., Philip N., Swillen A., Vorstman J. A. et al. 2015 22q11.2 deletion syndrome. Nat. Rev. Dis. Primers  1, 15071.CrossRefGoogle Scholar
  23. Mesbah K., Rana M. S., Francou A., van Duijvenboden K., Papaioannou V. E., Moorman A. F. et al. 2012 Identification of a Tbx1/Tbx2/Tbx3 genetic pathway governing pharyngeal and arterial pole morphogenesis. Hum. Mol. Genet.  21, 1217–1229.CrossRefGoogle Scholar
  24. Panamonta V., Wichajarn K., Chaikitpinyo A., Panamonta M., Pradubwong S. and Chowchuen B. 2016a Birth prevalence of chromosome 22q11.2 deletion syndrome: asystematic review of population-based studies. J. Med. Assoc. Thailand  99, S187–S193.Google Scholar
  25. Panamonta V., Wichajarn K., Wongswadiwat Y., Panamonta M., Pradubwong S. and Chowchuen B. 2016b Assessment of chromosome 22q11.2 deletion in patients with isolated cleft palate: asystematic review of prospective studies. J. Med. Assoc. Thailand  99, S194–S198.Google Scholar
  26. Perez E. and Sullivan K. E. 2002 Chromosome 22q11.2 deletion syndrome (DiGeorge and velocardiofacial syndromes). Curr. Opin. Pediatr.  14, 678–683.CrossRefGoogle Scholar
  27. Poirsier C., Besseau-Ayasse J., Schluth-Bolard C., Toutain J., Missirian C., Le Caignec C. et al. 2016 A French multicenter study of over 700 patients with 22q11 deletions diagnosed using FISH or aCGH. Eur. J. Hum. Genet.  24, 844–851.CrossRefGoogle Scholar
  28. Radio F. C., Bernardini L., Loddo S., Bottillo I., Novelli A., Mingarelli R. et al. 2010 TBX2 gene duplication associated with complex heart defect and skeletal malformations. Am. J. Med. Genet. A.  152A, 2061–2066.CrossRefGoogle Scholar
  29. Rasmussen T. L., Ma Y., Park C. Y., Harriss J., Pierce S. A., Dekker J. D. et al. 2015 Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses. PLoS One  10, e0121765.CrossRefGoogle Scholar
  30. Song T., Shi J., Guo Q., Lv K., Jiao X., Hu T. et al. 2015 Association between NOGGIN and SPRY2 polymorphisms and nonsyndromic cleft lip with or without cleft palate. Am. J. Med. Genet. A  167, 137–141.CrossRefGoogle Scholar
  31. Stoll G., Pietilainen O. P., Linder B., Suvisaari J., Brosi C., Hennah W. et al. 2013 Deletion of TOP3beta, a component of FMRP-containing mRNPs, contributes to neurodevelopmental disorders. Nat. Neurosci.  16, 1228–1237.CrossRefGoogle Scholar
  32. Tassano E., Jagannathan V., Drogemuller C., Leoni M., Hytonen M. K., Severino M. et al. 2015 Congenital aural atresia associated with agenesis of internal carotid artery in a girl with a FOXI3 deletion. Am. J. Med. Genet. A.  167A, 537–544.CrossRefGoogle Scholar
  33. van Duyvenvoorde H. A., Lui J. C., Kant S. G., Oostdijk W., Gijsbers A. C., Hoffer M. J. et al. 2014 Copy number variants in patients with short stature. Eur. J. Hum. Genet.  22, 602–609.CrossRefGoogle Scholar
  34. Vieira A. R., de Carvalho F. M., Johnson L., DeVos L., Swailes A. L., Weber M. L. et al. 2015 Fine mapping of 6q23.1 identifies TULP4 as contributing to clefts. Cleft. Palate. Craniofac. J.  52, 128–134.CrossRefGoogle Scholar
  35. Wamstad J. A. and Bardwell V. J. 2007 Characterization of BCOR expression in mouse development. Gene Expression Patterns  7, 550–557.CrossRefGoogle Scholar
  36. Wu D., Chen Y., Xu C., Wang K., Wang H., Zheng F. et al. 2013 Characteristic face: a key indicator for direct diagnosis of 22q11.2 deletions in Chinese velocardiofacial syndrome patients. PLoS One  8, e54404.CrossRefGoogle Scholar
  37. Xu D., Shen W., Guo R., Xue Y., Peng W., Sima J. et al. 2013 Top3beta is an RNA topoisomerase that works with fragile X syndrome protein to promote synapse formation. Nat. Neurosci.  16, 1238–1247.CrossRefGoogle Scholar
  38. Yang H., Robinson P. N. and Wang K. 2015 Phenolyzer: phenotype-based prioritization of candidate genes for human diseases. Nat. Methods  12, 841–843.CrossRefGoogle Scholar
  39. Zemojtel T., Kohler S., Mackenroth L., Jager M., Hecht J., Krawitz P. et al. 2014 Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome. Sci. Transl. Med.  6, 252ra123.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Oral and Cranio-maxillofacial Surgery, National Clinical Research Center for Oral Disease, Shanghai Ninth People’s HospitalShanghai Jiaotong University School of MedicineShanghaiPeople’s Republic of China
  2. 2.Shanghai Key Laboratory of StomatologyShanghaiPeople’s Republic of China
  3. 3.State Key Laboratory of Oral DiseasesWest China School of StomatologyChengduPeople’s Republic of China
  4. 4.Harvard School of Dental MedicineHarvard UniversityBostonUSA
  5. 5.Department of Plastic Surgery, Shanghai Ninth People’s HospitalShanghai Jiaotong University School of MedicineShanghaiPeople’s Republic of China
  6. 6.Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouPeople’s Republic of China

Personalised recommendations