Advertisement

Journal of Genetics

, 98:47 | Cite as

Whole-genome resequencing reveals genetic indels of feathered-leg traits in domestic chickens

  • Shaohua Yang
  • Zhaoyuan Shi
  • Xiaoqian OU
  • Guoqing LIUEmail author
Research Article
  • 45 Downloads

Abstract

Whole-genome resequencing provides the opportunity to explore the genomic variations and pave way for further functional assays to map the economical trait loci. In this study, we sequenced the genomes of mixed chicken samples from a full-sib family, with feathered and unfeathered legs at an average effective depth of \(4.43\times \), using Illumina Hiseq 2000 instruments. Over 2.1 million nonredundant short indels (1–71 bp) were obtained. Among them, 16,375 common indels that were polymorphic between the comparison groups were revealed for further analysis. The majority of the common differential indels (76.52%) were novel. Follow-up validation assays confirmed that 80% randomly selected indels represented true variations. The indels were annotated based on the chicken genome sequence assembly. As a result, 16,375 indels were found to be located within 2756 annotated genes, with only 33 (0.202%) located in exons. By integrated analysis of the 2756 genes with gene function and known quantitative trait loci, we identified a total of 24 promising candidate genes potentially affecting feathered-leg trait, i.e. FGF1, FGF4, FGF10, FGFR1, FRZB, WNT1, WNT3A, WNT11, PCDH1, PCDH10, PCDH19, SOX3, BMP2, NOTCH2, TGF-\(\beta \)2, DLX5, REPS2, SCN3B, TCF20, FGF3, FSTL1, WNT7B, ELOVL2 and FGF8. Our findings provide a basis for further study and reveal key genes for feathered-leg trait in chickens.

Keywords

whole-genome resequencing indels feathered-leg trait chicken 

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFD0502100) and National Science Foundation Project of Anhui (1908085MC63).

References

  1. Arensman M. D., Kovochich A. N., Kulikauskas R. M., Lay A. R., Yang P. T., Li X. et al. 2014 WNT7B mediates autocrine Wnt/\(\upbeta \)-catenin signaling and anchorage-independent growth in pancreatic adenocarcinoma. Oncogene 33, 899–908.CrossRefGoogle Scholar
  2. Bei M. and Maas R. 1998 FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development 125, 4325–4333.PubMedGoogle Scholar
  3. Darvekar S., Rekdal C., Johansen T. and Sjøttem E. 2013 A phylogenetic study of SPBP and RAI1: evolutionary conservation of chromatin binding modules. PLoS One 8, e78907.CrossRefGoogle Scholar
  4. Eric T. D. and Michael D. S. 2017 Pigeonetics takes flight: evolution, development, and genetics of intraspecific variation. Dev. Biol. 427, 241–250.CrossRefGoogle Scholar
  5. Frazer K. A., Eskin E., Kang H. M., Bogue M. A., Hinds D. A., Beilharz E. J. et al. 2007 A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature 448, 1050–1053.CrossRefGoogle Scholar
  6. Frazer K. A., Murray S. S., Schork N. J. and Topol E. J. 2009 Human genetic variation and its contribution to complex traits. Nat. Rev. Genet. 10, 241–251.CrossRefGoogle Scholar
  7. Gilissen C., Hoischen A., Han G. B. and Veltman J. A. 2012 Disease gene identification strategies for exome sequencing. Eur. J. Hum. Genet. 20, 490–497.CrossRefGoogle Scholar
  8. Hu J. and Ng P. C. 2012 Predicting the effects of frameshifting indels. Genome Biol. 13, R9.CrossRefGoogle Scholar
  9. Huang D. W., Sherman B. T. and Lempicki R. A. 2008 Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57.CrossRefGoogle Scholar
  10. Imsland F., Feng C., Boije H., Bed’hom B., Fillon V., Dorshorst B. et al. 2012 The rose-comb mutation in chickens constitutes a structural rearrangement causing both altered comb morphology and defective sperm motility. PLoS Genet. 8, e1002775.CrossRefGoogle Scholar
  11. Johnsson M., Gustafson I., Rubin C. J., Sahlqvist A. S., Jonsson K. B., Kerje S. et al. 2012 A sexual ornament in chickens is affected by pleiotropic alleles at HAO1 and BMP2, selected during domestication. PLoS Genet. 8, e1002914.CrossRefGoogle Scholar
  12. Kang H., Wang H., Fan Z., Zhao P., Khan A., Yin Z. et al. 2015 Resequencing diverse Chinese indigenous breeds to enrich the map of genomic variations in swine. Genomics 106, 286–294.CrossRefGoogle Scholar
  13. Koboldt D. C., Steinberg K. M., Larson D. E., Wilson R. K. and Mardis E. R. 2013 The next-generation sequencing revolution and its impact on genomics. Cell 155, 27–38.CrossRefGoogle Scholar
  14. Ku C. S., Naidoo N. and Pawitan Y. 2011 Revisiting Mendelian disorders through exome sequencing. Hum. Genet. 129, 351–370.CrossRefGoogle Scholar
  15. Li R. G., Wang Q., Xu Y. J., Zhang M., Qu X. K., Liu X. et al. 2013 Mutations of the SCN4B-encoded sodium channel \(\upbeta 4\) subunit in familial atrial fibrillation. Int. J. Mol. Med. 32, 144–150.CrossRefGoogle Scholar
  16. Mamanova L., Coffey A. J., Scott C. E., Kozarewa I., Turner E. H., Kumar A. et al. 2010 Target-enrichment strategies for next-generation sequencing. Nat. Methods 7, 111–118.CrossRefGoogle Scholar
  17. Mertes F., Elsharawy A., Sauer S., van Helvoort J. M., van der Zaag P. J., Franke A. et al. 2011 Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief Funct. Genomics 10, 374–386.CrossRefGoogle Scholar
  18. Metzker M. L. 2010 Sequencing technologies-the next generation. Nat. Rev. Genet. 11, 31–46.CrossRefGoogle Scholar
  19. Mou C., Pitel F., Gourichon D., Vignoles F., Tzika A., Tato P. et al. 2011 Cryptic patterning of avian skin confers a developmental facility for loss of neck feathering. PLoS Biol. 9, e1001028.CrossRefGoogle Scholar
  20. Ng P. C., Levy S., Huang J., Stockwell T. B., Walenz B. P., Li K. et al. 2008 Genetic variation in an individual human exome. PLoS Genet. 4, e1000160.CrossRefGoogle Scholar
  21. Oosterhoff J. K., Penninkhof F., Brinkmann A. O., Anton G. J. and Blok L. J. 2003 REPS2/POB1 is downregulated during human prostate cancer progression and inhibits growth factor signalling in prostate cancer cells. Oncogene 22, 2920–2925.CrossRefGoogle Scholar
  22. Rishikaysh P., Dev K., Diaz D., Qureshi W. M., Stanislav F. and Mokry J. 2014 Signaling involved in hair follicle morphogenesis and development. Int. J. Mol. Sci. 15, 1647–1670.CrossRefGoogle Scholar
  23. Royle S. J. 2013 Protein adaptation: mitotic functions for membrane trafficking proteins. Nat. Rev. Mol. Cell Biol. 14, 592–599.CrossRefGoogle Scholar
  24. Schäfgen J., Cremer K., Becker J., Wieland T., Zink A. M., Kim S. et al. 2016 De novo nonsense and frameshift variants of TCF20 in individuals with intellectual disability and postnatal overgrowth. Eur. J. Hum. Genet. 24, 1739–1745.CrossRefGoogle Scholar
  25. Tania N. P., Maarsingh H., T Bos I. S., Mattiotti A., Prakash S., Timens W. et al. 2017 Endothelial follistatin-like-1 regulates the postnatal development of the pulmonary vasculature by modulating BMP/Smad signaling. Pulm. Circ. 7, 219–231.CrossRefGoogle Scholar
  26. Tao H., Yoshimoto Y., Yoshioka H., Nohno T., Noji S. and Ohuchi H. 2002 FGF10 is a mesenchymally derived stimulator for epidermal development in the chick embryonic skin. Mech. Dev. 116, 39–49.CrossRefGoogle Scholar
  27. Van den Berg G., Somi S., Buffing A. A., Moorman A. F. and van den Hoff M. J. 2010 Patterns of expression of the follistatin and follistatin-like 1 genes during chicken heart development: a potential role in valvulogenesis and late heart muscle cell formation. Anat. Rec. (Hoboken) 290, 783–787.CrossRefGoogle Scholar
  28. Wang Y., Gao Y., Imsland F., Gu X., Feng C., Liu R. et al. 2012 The crest phenotype in chicken is associated with ectopic expression of HOXC8 in cranial skin. PLoS One 7, e34012.CrossRefGoogle Scholar
  29. Wells K. L., Hadad Y., Ben-Avraham D., Hillel J., Cahaner A. and Headon D. J. 2012 Genome-wide SNP scan of pooled DNA reveals nonsense mutation in FGF20 in the scaleless line of featherless chickens. BMC Genomics 13, 257.CrossRefGoogle Scholar
  30. Xie C., Mao X., Huang J., Ding Y., Wu J., Dong S. et al. 2011 KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39, W316–W322.CrossRefGoogle Scholar
  31. Yue Z., Jiang T. X., Widelitz R. B. and Chuong C. M. 2006 Wnt3a gradient converts radial to bilateral feather symmetry via topological arrangement of epithelia. Proc. Natl. Acad. Sci. USA 103, 951–955.CrossRefGoogle Scholar
  32. Yue Z., Jiang T. X., Wu P., Widelitz R. B. and Chuong C. M. 2012 Sprouty/FGF signaling regulates the proximal-distal feather morphology and the size of dermal papillae. Dev. Biol. 372, 45–54.CrossRefGoogle Scholar
  33. Zhan B., Fadista J., Thomsen B., Hedegaard J., Panitz F. and Bendixen C. 2011 Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping. BMC Genomics 12, 557.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Shaohua Yang
    • 1
  • Zhaoyuan Shi
    • 1
  • Xiaoqian OU
    • 1
  • Guoqing LIU
    • 1
    Email author
  1. 1.College of Food Science and BioengineeringHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations