Journal of Genetics

, 98:38 | Cite as

Identification of novel polymorphism in buffalo stanniocalcin-1 gene and its expression analysis in mammary gland under different stages of lactation

  • S. K. Mishra
  • P. K. Dubey
  • S. Goyal
  • S. Singh
  • S. K. Niranjan
  • V. Vohra
  • M. Mukesh
  • R. S. KatariaEmail author
Research Note


Stanniocalcin-1 (STC1) is secreted by the variety of tissues having a major role in the regulation of calcium ions in the involuting mammary gland. The present work aims to sequence and structural characterization as well as expression profiling of STC1 gene in buffalo. Polymorphism identified in the \(3^{\prime }\)-untranslated region (UTR) was analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) genotyping in riverine and swamp buffaloes. Expression profiling of STC1 was performed in different lactation stages of mammary gland and peripheral blood mononuclear cells to study the impact of \(3^{\prime }\)-UTR polymorphism on its expression. Different polymorphic sites were detected in the entire coding and noncoding regions of riverine and swamp buffaloes, including two INDELs. An identified polymorphic nucleotide locus A324G, having target sites for two miRNAs, namely bta-miR-2382 and bta-miR-1343, reported in cattle, was genotyped by PCR-RFLP to reveal variable allelic distribution among swamp and riverine buffaloes. Gene expression profiling across buffalo mammary tissues representing different lactation stages showed maximum expression of the STC1 gene in the involuting mammary gland. Ruminants’ specific genetic variation has been observed in STC1 and its implication in buffalo mammary gland involution as well as coregulation of gene expression through miRNA binding in the \(3^{\prime }\)-UTR is suggested.


STC1 gene polymorphism \(3^{\prime }\)-untranslated region micro-RNA target sites expression analysis Bubalus bubalis 



The authors wish to thank the Director, National Bureau of Animal Genetic Resources, Indian Council of Agricultural Research, for providing necessary funding to carry out the work.

Supplementary material

12041_2019_1082_MOESM1_ESM.doc (1.5 mb)
Supplementary material 1 (doc 1547 KB)


  1. An X., Song Y., Bu S., Ma H., Gao K., Hou J. et al. 2016 Association of polymorphisms at the microRNA binding site of the caprine KITLG 3\({}^\prime \)-UTR with litter size. Sci. Rep. 6, 25691.CrossRefGoogle Scholar
  2. Aslam M. and Hurley W. L. 1997 Proteolysis of milk proteins during involution of the bovine mammary gland. J. Dairy Sci. 80, 2004–2010.CrossRefGoogle Scholar
  3. Bonga S. E. W. and Pang P. K. T. 1991 Control of calcium regulating hormones in the vertebrates: Parathyroid hormone, calcitonin, prolactin, and stanniocalcin. Int. Rev. Cytol. 128, 139–213.CrossRefGoogle Scholar
  4. Chang A. C., Jeffrey K. J., Tokutake Y., Shimamoto A., Neumann A. A., Dunham M. A. et al. 1998 Human stanniocalcin (STC): genomic structure, chromosomal localization, and the presence of CAG trinucleotide repeats. Genomics 47, 393–398.CrossRefGoogle Scholar
  5. Correa M. T., Erb H. and Scarlettz J. 1993 Path analysis for seven postpartum disorders of Holstein cows. J. Dairy Sci. 76, 1305–1312.CrossRefGoogle Scholar
  6. Delbecchi L., Miller N., Prud’homme C., Petitclerc D., Wagner G. F. and Lacasse P. 2005 17\(\upbeta \)-Estradiol reduces milk synthesis and increases stanniocalcin gene expression in the mammary gland of lactating cows. Livestock Prod. Sci. 98, 57–66.CrossRefGoogle Scholar
  7. Dubey P. K., Goyal S., Aggarwal J., Gahlawat S. K., Kathiravan P., Mishra B. P. et al. 2013 Sequence and topological characterization of Toll-like receptor 8 gene of Indian riverine buffalo (Bubalus bubalis). Trop. Anim. Health Prod. 45, 91–99.CrossRefGoogle Scholar
  8. Guo F., Li Y., Wang J., Li Y., Li Y. and Li G. 2013 Stanniocalcin1 (STC1) inhibits cell proliferation and invasion of cervical cancer cells. PLoS One 8, e53989.CrossRefGoogle Scholar
  9. Ishibashi K. and Imai M. 2002 Prospect of a stanniocalcin endocrine/paracrine system in mammals. Am. J. Physiol. Renal. Physiol. 282, 367–375.CrossRefGoogle Scholar
  10. Jadon R. S., Dhaliwal G. S. and Jand S. K. 2005 Prevalence of aerobic and anaerobic uterine bacteria during peripartum period in normal and dystocia affected buffaloes. Anim. Reprod. Sci. 88, 215–224.CrossRefGoogle Scholar
  11. Jiang Y., Qin Z., Hu Z., Guan X., Wang Y., He Y. et al. 2013 Genetic variation in a hsa-let-7 binding site in RAD52 is associated with breast cancer susceptibility. Carcinogenesis 34, 689–693.Google Scholar
  12. Juhanson P., Rull K., Kikas T., Laivuori H., Vaas P., Kajantie E. et al. 2016 Stanniocalcin-1 hormone in nonpreeclamptic and preeclamptic pregnancy: Clinical, life-style, and genetic modulators. J. Clin. Endocrinol. Metab. 101, 4799–4807.CrossRefGoogle Scholar
  13. Lee M., Na S., Jeon D., Kim H., Choi Y. and Baik M. 2000 Induction of osteopontin gene expression during mammary gland involution and effects of glucocorticoid on its expression in mammary epithelial cells. Biosci. Biotechnol. Biochem. 64, 2225–2228.CrossRefGoogle Scholar
  14. Livak K. J. and Schmittgen T. D. 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2\(^{-\Delta \Delta {\rm CT}}\) method. Methods 25, 402–408.Google Scholar
  15. Palanisamy V., Jakymiw A., Van Tubergen E. A., D’Silva N. J. and Kirkwood K. L. 2012 Control of cytokine mRNA expression by RNA-binding proteins and microRNAs. J. Dental Res. 91, 651–658.CrossRefGoogle Scholar
  16. Raven L. A., Cocks B. G., Goddard M. E., Pryce J. E. and Hayes B. J. 2014 Genetic variants in mammary development, prolactin signalling and involution pathways explain considerable variation in bovine milk production and milk composition. Genet. Sel. Evol. 46, 29.CrossRefGoogle Scholar
  17. Roch G. J. and Sherwood N. M. 2011 Stanniocalcin has deep evolutionary roots in eukaryotes. Genome Biol. Evol. 3, 284–294.CrossRefGoogle Scholar
  18. Roche J. F. 2006 The effect of nutritional management of the dairy cow on reproductive efficiency. Anim. Reprod. Sci. 96, 282–296.CrossRefGoogle Scholar
  19. Sambrook J. and Russell D. W. 2001 Molecular cloning: a laboratory manual, 3rd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  20. Saunders M. A., Liang H. and Li W. H. 2007 Human polymorphism at microRNAs and microRNA target sites. Proc. Natl. Acad. Sci. USA 104, 3300–3305.CrossRefGoogle Scholar
  21. Sethupathy P. and Collins F. S. 2008 MicroRNA target site polymorphisms and human disease. Trends Genet. 10, 489–497.CrossRefGoogle Scholar
  22. Standart N. and Jackson R. J. 2007 MicroRNAs repress translation of m7Gppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes Dev. 21, 1975–1982.CrossRefGoogle Scholar
  23. Sutherland G. R. and Richards R. I. 1995 Simple tandem DNA repeats and human genetic disease. Proc. Natl. Acad. Sci. USA 92, 3636–3641.CrossRefGoogle Scholar
  24. Tremblay G., Bernier D. P., Delbecchi L., Wagner G. F., Talbot B. G. and Lacasse P. 2009 Local control of mammary involution: Is stanniocalcin-1 involved? J. Dairy Sci. 92, 1998–2006.CrossRefGoogle Scholar
  25. Warren S. T. 1996 The expanding world of trinucleotide repeats. Science 271, 1374–1375.CrossRefGoogle Scholar
  26. Wu L., Fan J. and Belasco J. G. 2006 MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl. Acad. Sci. USA 103, 4034–4039.CrossRefGoogle Scholar
  27. Zaidi D., James K. A. and Wagner G. F. 2006 Passive immunization of lactating mice with stanniocalcin-1 antiserum reduces mammary gland development, milk fat content, and postnatal pup growth. Am. J. Physiol. Endocrinol. Metab. 291, E974–E981.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • S. K. Mishra
    • 1
  • P. K. Dubey
    • 2
  • S. Goyal
    • 1
  • S. Singh
    • 1
  • S. K. Niranjan
    • 1
  • V. Vohra
    • 1
  • M. Mukesh
    • 1
  • R. S. Kataria
    • 1
    Email author
  1. 1.ICAR-National Bureau of Animal Genetic ResourcesKarnalIndia
  2. 2.Lewis Ketz School of MedicineTemple UniversityPhiladelphiaUSA

Personalised recommendations