Advertisement

Journal of Genetics

, 98:6 | Cite as

Cytogenetic microarray in structurally normal and abnormal foetuses: a five years experience elucidating increasing acceptance and clinical utility

  • Meenakshi Lallar
  • Priyanka Srivastava
  • Archana Rai
  • Deepti Saxena
  • Kausik Mandal
  • Shubha R. PhadkeEmail author
RESEARCH ARTICLE

Abstract

The aim of the present study was to evaluate the diagnostic yield of prenatal cytogenetic microarray (CMA) in structurally normal and abnormal foetuses and record the acceptance rate of CMA for prenatal diagnosis over a course of five years. In 128 structurally normal and abnormal foetuses, CMA was performed along with foetal karyotype, after exclusion of aneuploidy by quantitative fluorescence polymerase chain reaction. The microarray was able to detect the pathogenic variants in 5.5% cases; the diagnostic yield in structurally abnormal foetuses was 8.8% and 4.7% in foetuses with a high aneuploidy risk. Balanced and unbalanced translocations, and low level mosaicism were detected. Reanalysis of variants of uncertain significance identified pathogenic variant. The study shows higher diagnostic yield in structurally abnormal cases, the importance of foetal karyotype and reanalysis in microarray. The acceptance rate of prenatal CMA increased five-fold over a period of five years.

Keyword

cytogenetic microarray prenatal foetal structural abnormalities karyotype variants of uncertain significance 

Notes

Acknowledgements

We thank ‘Indian Council of Medical Research’ for funding support (ICMR grant number: 63/8/2010-BMS) and we are thankful to the patients’ families for their unending support and patience.

References

  1. American College of Obstetricians and Gynecologists Committee on Genetics 2013 Committee Opinion No. 581: the use of chromosomal microarray analysis in prenatal diagnosis. Obstet. Gynecol. 122, 1374–1377.Google Scholar
  2. Boggula V. R., Agarwal M., Kumar R., Awasthi S. and Phadke S. R. 2015 Recurrent benign copy number variants and issues in interpretation of variants of unknown significance identified by cytogenetic microarray in Indian patients with intellectual disability. Indian J. Med. Res. 142, 699–712.CrossRefGoogle Scholar
  3. Breman A., Pursley A. N., Hixson P., Bi W. Ward P., Bacino C. A. et al. 2012 Prenatal chromosomal microarray analysis in a diagnostic laboratory; experience with \(>\)1000 cases and review of the literature. Prenat. Diagn. 32, 351–361.CrossRefGoogle Scholar
  4. Curran S., Ahn J. W., Grayton H., Collier D. A. and Ogilvie C. M. 2013 NRXN1 deletions identified by array comparative genome hybridisation in a clinical case series—further understanding of the relevance of NRXN1 to neurodevelopmental disorders. J. Mol. Psychiatry 1, 4.CrossRefGoogle Scholar
  5. Esplin E. D., Li B., Slavotinek A., Novelli A., Battaglia, Clark R. et al. 2014 Nine patients with Xp22.31 microduplication, cognitive deficits, seizures, and talipes anomalies. Am. J. Med. Genet. A. 164, 2097–2103.Google Scholar
  6. Guella I., McKenzie M. B., Evans D. M., Buerki S. E., Toyota E. B., van Allen M. I. et al. 2017 De Novo mutations in YWHAG cause early-onset epilepsy. Am. J. Hum. Genet. 101, 300–310.CrossRefGoogle Scholar
  7. Hillman S. C., McMullan D. J., Hall G., Togneri F. S., James N., Maher E. J. et al. 2013 Use of prenatal chromosomal microarray: prospective cohort study and systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 41, 610–620.CrossRefGoogle Scholar
  8. Liao C., Fu F., Li R., Yang W. Q., Lia H. Y., Yan J. R. et al. 2013 Loss-of-function variation in the DPP6 gene is associated with autosomal dominant microcephaly and mental retardation. Eur. J. Med. Genet. 56, 484–489.CrossRefGoogle Scholar
  9. Redon R., Rigler D. and Carter N. P. 2009 Comparative genomic hybridization: DNA preparation for microarray fabrication. Methods Mol. Biol. 529, 259–266.Google Scholar
  10. Shaffer L. G., Dabell M. P., Fisher A. J., Coppinger J., Bandhdz A. M., Ellison J. W. et al. 2012 Experience with microarray-based comparative genomic hybridization for prenatal diagnosis in over 5000 pregnancies. Prenat. Diagn. 32, 976–985.CrossRefGoogle Scholar
  11. Shinawi M., Liu P., Kang S. H., Shen J., Belmont J. W., Scott D. A. et al. 2010 Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size. J. Med. Genet. 47, 332–341.CrossRefGoogle Scholar
  12. South S. T., Lee C., Lamb A. N., Higgins A. W., Kearney H. M. et al. 2013 Working Group for the American College of Medical Genetics and Genomics Laboratory Quality Assurance Committee. ACMG Standards and Guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: revision 2013. Genet. Med. 15, 901–909.CrossRefGoogle Scholar
  13. Wapner R. J., Martin C. L., Levy B., Ballif B. C., Christine M., Zachary I. M. et al. 2012 Chromosomal microarray versus karyotyping for prenatal diagnosis. N. Engl. J. Med. 367, 2175–2178.CrossRefGoogle Scholar
  14. Weiss L. A., Shen Y., Korn J. M., Arking D. E., Miller D. T., Fossdal R. et al. 2008 Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med. 358, 667–675.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Meenakshi Lallar
    • 1
  • Priyanka Srivastava
    • 1
  • Archana Rai
    • 1
  • Deepti Saxena
    • 1
  • Kausik Mandal
    • 1
  • Shubha R. Phadke
    • 1
    Email author
  1. 1.Department of Medical GeneticsSanjay Gandhi Post Graduate Institute of Medical SciencesLucknowIndia

Personalised recommendations