Journal of Genetics

, 98:2 | Cite as

Identification of microsatellite markers and their application in yellow catfish (Pseudobagrus fulvidraco Richardson, 1846) population genetics of Korea

  • Jeong-Nam YuEmail author
  • Sang-Ki Kim
  • Jin Sagong
  • Shi Hyun Ryu
  • Byungsoo Chae
Research Note


Microsatellite markers from a fresh water yellow catfish, Pseudobagrus fulvidraco, were developed by whole-genome sequencing in the Ion S5 system. Of the 40 chosen sets of microsatellite markers, with tetra-repeat and penta-repeat motifs, from a total 19,743 sequence, only 13 markers were successfully applied in 78 individual fish sampled to detect genomic variability from four natural populations of Korea. On an average, the number of alleles per marker was 6.7. The observed heterozygosity varied from 0.048 to 0.810. Twelve microsatellite markers conformed to Hardy–Weinberg equilibrium and none exhibited significant linkage disequilibrium. In yellow catfish, genetic differentiation among four natural populations was further supported by \(F_{\mathrm{ST}}\) (\(P<0.05\)) and STRUCTURE analysis. The microsatellite markers identified could facilitate genetic diversity and population structure studies and thus aid in conservation of the yellow catfish.


yellow catfish population genetics conservation genetics Korea microsatellites Pseudobagrus fulvidraco 



This project was supported by the grant ‘Research for Conservation and Management of Freshwater Biodiversity (2017)’ funded by the Nakdonggang National Institute of Biological Resources (NNIBR).


  1. Bruford M. W. and Wayne R. K. 1993 Microsatellites and their application to population genetic studies. Curr. Opin. Genet. Dev. 3, 939–943.CrossRefGoogle Scholar
  2. Cao X. J. and Wang W. M. 2009 Histology and mucin histochemistry of the digestive tract of yellow catfish, Pelteobagrus fulvidraco. Anat. Histol. Embryol. 38, 254–261.CrossRefGoogle Scholar
  3. Carvalho G. R. 1993 Evolutionary aspects of fish distribution: genetic variability and adaptation. J. Fish Biol. 43, 53–73.CrossRefGoogle Scholar
  4. Edwards A., Civitello A., Hammond H. A. and Caskey C. T. 1991 DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am. J. Hum. Genet. 49, 746.PubMedPubMedCentralGoogle Scholar
  5. Excoffier L., Laval G. and Schneider S. 2005 Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. 1, 47–50.CrossRefGoogle Scholar
  6. Goudet J. 2001 FSTAT, a program to estimate and test gene diversity and fixation indices (version 2.9. 3) (
  7. Guo J. F., Wang Y., Ma H. Y. and Yue Y. S. 2006 Microsatellite marker analysis of genetic diversity and phylogenetic relationships in three populations of Pseudobagrus fulvidraco. Amino Acids Biot. Resour. Sin. 28, 5–8.Google Scholar
  8. Hu G. F., Liang H. W., Li Z., Wang C. Z., Wu Q. C., Liu X. J. et al. 2009 Isolation and characterization of polymorphic microsatellite markers in the yellow catfish, Pelteobagrus fulvidraco. Conserv. Genet. Resour. 1, 63–66.CrossRefGoogle Scholar
  9. Kim I. S. and Park J. Y. 2002 Freshwater fishes of Korea, pp. 467. Kyo-Hak Publishing, Seoul (in Korean).Google Scholar
  10. Liu H., Guan B., Xu J., Hou C., Tian H. and Chen H. 2013 Genetic manipulation of sex ratio for the large-scale breeding of YY super-male and XY all-male yellow catfish (Pelteobagrus fulvidraco (Richardson)). Mar. Biotechnol. 15, 321–328.CrossRefGoogle Scholar
  11. Pan J. L., Ding S. Y., Ge J. C., Yan W. H., Hao C., Chen J. X. et al. 2008 Development of cryopreservation for maintaining yellow catfish Pelteobagrus fulvidraco sperm. Aquaculture 279, 173–176.CrossRefGoogle Scholar
  12. Panigrahi J., Sahu A. R. and Mishra R. R. 2015 Development and applications of DNA markers in pigeonpea: the present status and future prospects. Applications of molecular markers in plant genome analysis and breeding, pp. 91–117. Research Signpost, Ontario, Canada.Google Scholar
  13. Pritchard J., Stephens M., Rosenberg N. A. and Donnelly P. 2000 Association mapping in structured populations. Am. J. Hum. Genet. 67, 170–181.CrossRefGoogle Scholar
  14. Schuelke M. 2000 An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18, 233–234.CrossRefGoogle Scholar
  15. Tóth G., Gáspári Z. and Jurka J. 2000. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 10, 967–981.CrossRefGoogle Scholar
  16. Van Oosterhout C., Hutchinson W. F., Wills D. and Shipley P. 2004 MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Resour. 4, 535–538.CrossRefGoogle Scholar
  17. Wang W. M., Abbas K. and Yan A. S. 2006b Embryonic development of Pelteobagrus fulvidraco (Richardson, 1846). Chin. J. Oceanol. Limnol. 24, 378–383.CrossRefGoogle Scholar
  18. Yi G., Kaiyu W., Defang C., Fanling F. and Yidan H. 2010 Isolation and characterization of Edwardsiella ictaluri from cultured yellow catfish (Pelteobagrus fulvidraco). Israeli J. Aquac.-Bamidgeh 62, 105–115.Google Scholar
  19. Yoo D. J., Han K. H., Lee S. H., Yim H. S., Hwang J. H., Lee J. H. et al. 2008 Ichthyofauna collected from reservoirs in Pohang-si, Gyeongsangbuk-do. Korean J. Fish Aquat. Sci. 41, 363–370.Google Scholar
  20. Zhang X., Li Y., Gao Z. and Wang W. 2009 Isolation and characterization of polymorphic microsatellite loci from yellow catfish (Pelteobagrus fulvidraco). Conserv. Genet. Resour. 1, 313–315.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Nakdonggang National Institute of Biological ResourcesSangju-siSouth Korea
  2. 2.Institute of Freshwater EcologyDaeguSouth Korea

Personalised recommendations