Advertisement

Journal of Genetics

, Volume 97, Supplement 1, pp 95–100 | Cite as

Isolation and cross-amplification of the first set of polymorphic microsatellite markers of two high-Andean cushion plants

  • Ian S. Acuña-Rodríguez
  • Nicolas Gouin
  • Leonardo Cifuentes-Lisboa
  • Francisco A. Squeo
Online Resources
  • 49 Downloads

Abstract

In the southern Andes mountains (27–\(39{^{\circ }}\hbox {S}\)) Azorella madreporica and Laretia acaulis, two Apiaceae cushion plant species commonly known as yaretas, conform a well-established altitudinal vegetation belt along the lower Andean zone. These species have been considered as fundamental components of several ecological dynamics within their communities; however, high-mountain ecosystems are increasingly threatened worldwide by natural and anthropogenic pressures and the southern Andes are not the exception. Recognizing that genetic information is crucial for the success of any conservation or restoration initiative in wild populations, we developed and cross-amplified 28 specifically designed microsatellite markers (14 in A. madreporica and 14 in L. acaulis), and also tested the cross amplification of 25 markers from the related species Azorella selago. In a region which is particularly vulnerable to global change trends, this new polymorphic microsatellite loci will be useful in the study of the genetic diversity of these high-mountain cushion plants, which are pivotal in the structuring of their native ecosystems.

Keywords

cushion plants high-Andes microsatellite markers Azorella madreporica Laretia acaulis 

Notes

Acknowledgements

The authors thank Rasme Hereme and Maria A. Montoya for their valuable laboratory assistance, Dr Celine Born for kindly sharing the A. selago microsatellite library with additional information for optimization and Craig Weideman for checking the language of the manuscript. This study was funded by Compañía Minera Nevada (project: NEVA0606c) and the Institute of Ecology and Biodiversity (IEB) through the projects: P05-002 (Iniciativa Científica Milenio) and PFB 23 (CONICYT, Chile). The Ph.D. scholarship to IA was also funded by Compañía Minera Nevada.

References

  1. Batson W. G., Gordon I. J., Fletcher D. B. and Manning A. D. 2015 Review: translocation tactics: a framework to support the IUCN Guidelines for wildlife translocations and improve the quality of applied methods. J. Appl. Ecol52, 1598–1607.CrossRefGoogle Scholar
  2. Cavieres L. A., Peñaloza A. and Arroyo M. T. K. 2000 Altitudinal vegetation belts in the high-Andes of central Chile (\(33^{\circ } \text{ S }\)). Rev. Chil. Hist. Nat. 73, 331–344.CrossRefGoogle Scholar
  3. Cerfonteyn M. E., Le P. C. R., Van B. J. V. and Born C. 2011 Cryptic spatial aggregation of the cushion plant Azorella selago (Apiaceae) revealed by a multilocus molecular approach suggests frequent intraspecific facilitation under sub-Antarctic conditions. Am. J. Bot. 98, 909–914.CrossRefGoogle Scholar
  4. Clark L. and Jasieniuk M. 2011 Polysat: an R package for polyploid microsatellite analysis. Mol. Ecol. Res. 11, 562–566.CrossRefGoogle Scholar
  5. Cota-Sánchez J. H., Remarchuk K. and Ubayasena K. 2006 Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant. Mol. Biol. Rep. 24, 161–167.CrossRefGoogle Scholar
  6. Doyle J. and Doyle J. L. 1987 Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem. Bull. 19, 11–15.Google Scholar
  7. Elsen P. R. and Tingley M. W. 2015 Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5, 772–776.CrossRefGoogle Scholar
  8. Houde A. L. S., Garner S. R. and Neff B. D. 2015 Restoring species through reintroductions: strategies for source population selection. Restor. Ecol. 23, 746–753.CrossRefGoogle Scholar
  9. Hughes A. R., Inouye B. D., Johnson M. T., Underwood N. and Vellend M. 2008 Ecological consequences of genetic diversity. Ecol. Lett11, 609–623.CrossRefGoogle Scholar
  10. Jombart T. 2008 Adegenet: a R-package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405.CrossRefGoogle Scholar
  11. Kikvidze Z., Brooker R. W., Butterfield B. J., Callaway R. M., Cavieres L. A., Cook B. J. et al. 2015 The effects of foundation species on community assembly: a global study on alpine cushion plant communities. Ecology 96, 2064–2069.CrossRefGoogle Scholar
  12. Mandák B., Havrdová A., Krak K., Hadincová V., Vít P., Zákravský P. and Douda J. 2016 Recent similarity in distribution ranges does not mean a similar postglacial history: a phylogeographical study of the boreal tree species Alnus incana based on microsatellite and chloroplast DNA variation. New Phytol. 210, 1395–1407.CrossRefGoogle Scholar
  13. Mijangos J. L., Pacioni C., Spencer P. and Craig M. D. 2015 Contribution of genetics to ecological restoration. Mol. Ecol. 24, 22–37.CrossRefGoogle Scholar
  14. Molecular Ecology Resources Primer Development Consortium 2010 Permanent genetic resources added to Molecular Ecology Resources Database 1 August 2009–30 September 2009. Mol. Ecol. Res10, 232–236.Google Scholar
  15. Mortimer E., McGeoch M. A., Daniels S. R. and van Vuuren B. J. 2008 Growth form and population genetic structure of Azorella selago on sub-Antarctic Marion Island. Antarct. Sci. 20, 381–390.CrossRefGoogle Scholar
  16. Ohsawa T. and Ide Y. 2008 Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Glob. Ecol. Biogeogr. 17, 152–163.CrossRefGoogle Scholar
  17. Orsini L., Mergeay J., Vanoverbeke J. and Meester L. 2013 The role of selection in driving landscape genomic structure of the water flea Daphnia magna. Mol. Ecol. 22, 583–601.CrossRefGoogle Scholar
  18. Oyarzún J. and Oyarzún R. 2011 Sustainable development threats, inter-sector conflicts and environmental policy requirements in the arid, mining rich, northern Chile territory. Sustain. Dev. 19, 263–274.CrossRefGoogle Scholar
  19. Raymond M. and Rousset F. 1995 GENEPOP (version 1.2): population genetics software for exact tests and ecumenism. Heredity 86, 248–249.CrossRefGoogle Scholar
  20. Reid A. M. and Lortie C. J. 2012 Cushion plants are foundation species with positive effects extending to higher trophic levels. Ecosphere 3, art96.CrossRefGoogle Scholar
  21. Rozen S. and Skaletsky H. 2000 Primer3 on the www for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386.PubMedGoogle Scholar
  22. Scotti I., Magni F., Paglia G. and Morgante M. 2002 Trinucleotide microsatellites in Norway spruce (Picea abies): their features and the development of molecular markers. Theor. Appl. Genet. 106, 40–50.CrossRefGoogle Scholar
  23. Stöcklin J., Kuss P. and Pluess A. R. 2009 Genetic diversity, phenotypic variation and local adaptation in the alpine landscape: case studies with alpine plant species. Bot. Helv. 119, 125–133.CrossRefGoogle Scholar
  24. van Oosterhout C., Hutchinson W. F., Wills D. P. and Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 4, 535–538.CrossRefGoogle Scholar
  25. Varshney R. K., Graner A. and Sorrells M. E. 2005 Genic microsatellite markers in plants: features and applications. Trends Biotechnol23, 48–55.CrossRefGoogle Scholar
  26. Wortley L., Hero J. M. and Howes M. 2013 Evaluating ecological restoration success: a review of the literature. Restor. Ecol. 21, 537–543.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Departamento de Biología, Facultad de CienciasUniversidad de La SerenaLa SerenaChile
  2. 2.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)La SerenaChile
  3. 3.Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
  4. 4.Instituto de Investigación Multidisciplinar en Ciencia y TecnologíaUniversidad de La SerenaLa SerenaChile

Personalised recommendations