Journal of Genetics

, Volume 97, Issue 4, pp 1013–1038 | Cite as

Maintenance of multipartite genome system and its functional significance in bacteria

  • Hari Sharan MisraEmail author
  • Ganesh Kumar Maurya
  • Swathi Kota
  • Vijaya Kumar Charaka
Review Article


Bacteria are unicellular organisms that do not show compartmentalization of the genetic material and other cellular organelles as seen in higher organisms. Earlier, bacterial genomes were defined as single circular chromosome and extrachromosomal plasmids. Recently, many bacteria were found harbouring multipartite genome system and the numbers of copies of genome elements including chromosomes vary from one to several per cell. Interestingly, it is noticed that majority of multipartite genome-harbouring bacteria are either stress tolerant or pathogens. Further, it is observed that the secondary genomes in these bacteria encode proteins that are involved in bacterial genome maintenance and also contribute to higher stress tolerance, and pathogenicity in pathogenic bacteria. Surprisingly, in some bacteria the genes encoding the proteins of classical homologous recombination pathways are present only on the secondary chromosomes, and some do not have either of the classical homologous recombination pathways. This review highlights the presence of ploidy and multipartite genomes in bacterial system, the underlying mechanisms of genome maintenance and the possibilities of these features contributing to higher abiotic and biotic stress tolerance in these bacteria.


bacterial pathogenesis genome segregation multipartite genome maintenance radioresistance recombination pathways serine/threonine protein kinases stress tolerance 



The authors are grateful to Dr Subrata Chattopadhyay and Dr Chitra Seetharam Misra for critical reading of the manuscript and their comments.


  1. Agnili K., Schwager S., Uehlinger S., Vergunst A., Viteri D. F., Nguyen D. T. et al. 2012 Exposing the third chromosome of Burkholderia cepacia complex strains as a virulence plasmid. Mol. Microbiol. 83, 362–378.CrossRefGoogle Scholar
  2. Allardet-Servent A., Michaux-Charachon S., Jumas-Bilak E., Karayan L. and Ramuz M. 1993 Presence of one linear and one circular chromosome in the Agrobacterium tumefacience C58 genome. J. Bacteriol. 175, 7869–7874.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amadou C., Pascal G., Mangenot S., Glew M., Bontemps C., Capela D. et al. 2008 Genome sequence of the \(\upbeta \)-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res. 18, 1472–1483.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ancora M., Marcacci M., Orsini M., Zilli K., Di Giannatale E., Garofolo G. et al. 2014 Complete genome sequence of a Brucella ceti ST26 strain isolated from a striped dolphin (Stenella coeruleoalba) on the Coast of Italy. Genome Announc. 6, 2.Google Scholar
  5. Audic S., Lescot M., Claverie J. M., Cloeckaert A. and Zygmunt M. S. 2009 The genome sequence of Brucella pinnipedialis B2/94 sheds light on the evolutionary history of the genus Brucella. BMC Evol. Biol. 11, 200.CrossRefGoogle Scholar
  6. Bjornsdottir-Butler K., McCarthy S. A., Dunlap P. V., Timme R. E. and Benner R. A. Jr. 2015 Draft genome sequences of histamine-producing Photobacterium kishitanii and Photobacterium angustum, isolated from albacore (Thunnus alalunga) and yellowfin (Thunnus albacares) tuna. Genome Announc. 3, e00400–e00415.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chain P. S., Denef V. J., Konstantinidis K. T., Vergez L. M., Agullo L., Reyes V. L. et al. 2006 Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc. Natl. Acad. Sci. USA 103, 15280–15287.PubMedCrossRefGoogle Scholar
  8. Chain P. S., Lang D. M., Comerci D. J., Malfatti S. A., Vergez L. M., Shin M. et al. 2011 Genome of Ochrobactrum anthropi ATCC 49188 T, a versatile opportunistic pathogen and symbiont of several eukaryotic hosts. J. Bacteriol. 193, 4274–4275.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Charaka V. K. and Misra H. S. 2012 Functional characterization of the role of the chromosome I partitioning system in genome segregation in Deinococcus radiodurans. J. Bacteriol194, 5739–5748.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Charaka V. K., Mehta K. P. and Misra H. S. 2013 ParA encoded on chromosome II of Deinococcus radiodurans binds to nucleoid and inhibits cell division in Escherichia coli. J. Biosci38, 487–497.PubMedCrossRefGoogle Scholar
  11. Charaka V. K., Kota S. and Misra H. S. 2014 ParA encoded on chromosome I of Deinococcus radiodurans requires its cognate ParB and centromere for its dynamics. Proc. Ind. Natl. Sci. Acad. 80, 663–674.CrossRefGoogle Scholar
  12. Chen C. Y., Wu K. M., Chang Y. C., Chang C. H., Tsai H. C., Liao T. L. et al. 2003 Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res. 13, 2577–2587.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cheng H. P. and Lessie T. G. 1994 Multiple replicons constituting the genome of Pseudomonas cepacia 17616. J. Bacteriol. 176, 4034–4042.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cooper V. S., Vohr S. H., Wrocklage S. C. and Hatcher P. J. 2010 Why genes evolve faster on secondary chromosomes in bacteria. PLoS Comput. Biol. 6, e1000732.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cosgrove K., Coutts G., Jonsson I.-M., Tarkowski A., Kokai-Kun J.-F., Mond J. J. et al. 2007 Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus. J. Bacteriol189, 1025–1035.PubMedCrossRefGoogle Scholar
  16. Crook M. B., Mitra S., Ane J. M., Sadowsky M. J. and Gyaneshwar P. 2013 Complete genome sequence of the Sesbania symbiont and rice growth-promoting endophyte Rhizobium sp. strain IRBG74. Genome Announc1, e00934–e00913.PubMedPubMedCentralCrossRefGoogle Scholar
  17. De Oliveira Veras A. A., da Silva M. L., Gomes J. C., Dias L. M., de Sá P. C., Alves J. T. et al. 2015 Draft genome sequences of Vibrio fluvialis strains 560 and 539, isolated from environmental samples. Genome Announc3, e01344-14.CrossRefGoogle Scholar
  18. Devigne A., Mersaoui S., Bouthier-de-la-Tour C., Sommer S. and Servant P. 2013 The PprA protein is required for accurate cell division of \(\upgamma \)-irradiated Deinococcus radiodurans bacterium. DNA Repair 12, 265–272.PubMedCrossRefGoogle Scholar
  19. Devigne A., Guerin P., Lisboa J., Quevillon-Cheruel S., Armengaud J., Sommer S. et al. 2016 PprA protein is involved in chromosome segregation via its physical and functional interaction with DNA gyrase in irradiated Deinococcus radiodurans bacterium. Mol. Biol. Physiol1, e00036–e000315.Google Scholar
  20. Dobruk-Serkowska A., Caccamo M., Rodriguez-Castaneda F., Wu M., Bryce K., Ng I. et al. 2012 Uncoupling of nucleotide hydrolysis and polymerization in the ParA protein superfamily disrupts DNA segregation dynamics. J. Biol. Chem287, 42545–42553.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Donczew M., Mackiewicz P., Wróbel A., Flärdh K., Zakrzewska-Czerwińska J. and Jakimowicz D. 2016 ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation. Open Biol6, 150263.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Donovan C., Schwaiger A., Krämer R. and Bramkamp M. 2010 Subcellular localization and characterization of the ParAB system from Corynebacterium glutamicum. J. Bacteriol. 192, 3441–3451.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Draper G. C. and Gober J. W. 2002 Bacterial chromosome segregation. Annu. Rev. Microbiol. 56, 567–597.PubMedCrossRefGoogle Scholar
  24. Dubarry N., Pasta F. and Lane D. 2006 ParABS systems of the four replicons of Burkholderia cenocepacia: new chromosome centromeres confer partition specificity. J. Bacteriol. 188, 1489–1496.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ebersbach G. and Gerdes K. 2005 Plasmid segregation mechanisms. Annu. Rev. Genet. 39, 453–479.PubMedCrossRefGoogle Scholar
  26. Egan E. S., Fogel M. A. and Waldor M. K. 2005 Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol. Microbiol. 56, 1129–1138.PubMedCrossRefGoogle Scholar
  27. Errington J., Murray H. and Wu L. J. 2005 Diversity and redundancy in bacterial chromosome segregation mechanisms. Philos. Trans. R. Soc. London, B 360, 497–505.CrossRefGoogle Scholar
  28. Espeli O., Borne R., Dupaigne P., Thiel A., Gigant E., Mercier R. et al. 2012 MatP–divisome interaction coordinates chromosome segregation with cell division in E. coli. EMBO J. 31, 3198–3211.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Evangelista K. V. and Cobum J. 2010 Leptospiraas an emerging pathogen: a review of its biology, pathogenesis and host immune responses. Future Microbiol. 5, 1413–1425.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ferreira A. C., Nobre M. F., Rainey F. A., Silva M. T., Wait R. and Burghardt J. 1997 Deinococcus geothermalis sp. Nov., and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int. J. Syst. Bacteriol. 47, 939–947.PubMedCrossRefGoogle Scholar
  31. Fiebig A., Keren K. and Theriot J. A. 2006 Fine-scale time-lapse analysis of the biphasic, dynamic behaviour of the two Vibrio cholerae chromosomes. Mol. Microbiol. 60, 1164–1178.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Finan T. M., Weidner S., Wong K., Buhrmester J., Chain P., Vorholter F. J. et al. 2001 The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc. Natl. Acad. Sci. USA 98, 9889–9894.PubMedCrossRefGoogle Scholar
  33. Fogel M. A. and Waldor M. K. 2005 Distinct segregation dynamics of the two Vibrio cholerae chromosomes. Mol. Microbiol. 55, 125–136.PubMedCrossRefGoogle Scholar
  34. Fogel M. A. and Waldor M. K. 2006 A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev. 20, 3269–3282.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Galardini M., Pini F., Bazzicalupo M., Biondi E. G. and Mengoni A. 2013 Replicon-dependent bacterial genome evolution: the case of Sinorhizobium meliloti. Genome Biol. Evol5, 542–558.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Galibert F., Finan T. M., Long S. R., Puhler A., Abola P., Ampe F. et al. 2001 The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293, 668–672.PubMedCrossRefGoogle Scholar
  37. Garcia Costas A. M., Tsukatani Y., Rijpstra W. I., Schouten S., Welander P. V., Summons R. E. et al. 2012 Identification of the bacteriochlorophylls, carotenoids, quinones, lipids, and hapanoids of Cadidatus  Chloracidobacterium thermophilum. J. Bacteriol. 194, 1158–1168.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gerdes K., Howard M. and Szardenings F. 2010 Pushing and pulling in prokaryotic DNA segregation. Cell 121, 927–942.CrossRefGoogle Scholar
  39. Ghosh S. K., Hajra S., Paek A. and Jayaram M. 2006 Mechanisms for chromosome and plasmid segregation. Annu. Rev. Biochem. 75, 211–241.PubMedCrossRefGoogle Scholar
  40. Gitai Z. 2006 Plasmid segregation: a new class of cytoskeletal proteins emerges. Curr. Biol16, R133–R136.PubMedCrossRefGoogle Scholar
  41. Goodner B., Hinkle G., Gattung S., Miller N., Blanchard M., Qurollo B. et al. 2001 Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294, 2323–2328.PubMedCrossRefGoogle Scholar
  42. Goudenege D., Labreuche Y., Krin E., Ansquer D., Mangenot S. and Calteau A. 2013 Comparative genomics of pathogenic lineages of Vibrio nigripulchritudo identifies virulence-associated traits. ISME J. 7, 1985–1996.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hasan N. A., Grim C. J., Haley B. J., Chun J., Alam M., Taviani E. et al. 2010 Comparative genomics of clinical and environmental Vibrio mimicus. Proc. Natl. Acad. Sci. USA 107, 21134–21139.PubMedCrossRefGoogle Scholar
  44. Hatano T. and Niki H. 2010 Partitioning of P1 plasmids by gradual distribution of the ATPase ParA. Mol. Microbiol. 78, 1182–1198.PubMedCrossRefGoogle Scholar
  45. Heidelberg J. F., Eisen J. A., William C. N., Rebecca A. C., Michelle L. G., Robert J. D. et al. 2000 DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477–483.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hjerde E., Lorentzen M. S., Holden M. T., Seeger K., Paulsen S., Bason N. et al. 2008 The genome sequence of the fish pathogen Alivibrio salmonicida strain LFI1238 shows extensive evidence of gene decay. BMC Genomics 9, 616.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hoffmann M., Monday S. R., Allard M. W., Strain E. A., Whittaker P., Naum M. et al. 2012 Vibrio caribbeanicus sp. nov., isolated from the marine sponge Scleritoderma cyanea. Int. J. Syst. Evol. Microbiol. 62, 1736–1743.PubMedCrossRefGoogle Scholar
  48. Holden M. T., Seth-Smith H. M., Crossman L. C., Sebaihia M., Bentley S. D., Cerdeno-Tarraga A. M. et al. 2009 The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J. Bacteriol. 191, 261–277.PubMedCrossRefGoogle Scholar
  49. Holden M. T., Titball R. W., Peacock S. J., Cerdeno-Tarraga A. M., Atkins T., Crossman L. C. et al. 2004 Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc. Natl. Acad. Sci. USA 101, 14240–14245.PubMedCrossRefGoogle Scholar
  50. Italiani V. C., da Silva Neto J. F., Braz V. S. and Marques M. V. 2011 Regulation of catalase-peroxidase KatG is OxyR dependent and Fur independent in Caulobacter crescentus. J. Bacteriol. 193, 1734–1744.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jacob F., Brenner S. and Cuzin F. 1963 On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp. Quant. Biol. 23, 329–348.CrossRefGoogle Scholar
  52. Jensen R. B. and Shapiro L. 1999 The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. Proc. Natl. Acad. Sci. USA 96, 10661–10666.PubMedCrossRefGoogle Scholar
  53. Jumas-Bilak E., Michaux-Charachon S., Bourg G., Ramuz M. and Allardet-Servent A. 1998 Unconventional genomic organization in the alpha subgroup of the proteobacteria. J. Bacteriol. 180, 2749–2755.PubMedPubMedCentralGoogle Scholar
  54. Kadoya R., Baek J.-H., Sarker A. and Chattoraj D. K. 2011 Participation of chromosome segregation protein ParAI of Vibrio cholerae in chromosome replication. J. Bacteriol. 193, 1504–1514.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kamp H. D., Patimalla-Dipali B., Lazinski D. W., Wallace-Gadsden F. and Camilli A. 2013 Gene fitness landscapes of Vibrio cholerae at important stages of its life cycle. PLoS Pathog. 9, e1003800.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kelly W. J., Leahy S. C., Altermann E., Yeoman C. J., Dunne J. C., Kong Z. et al. 2010 The glycobiome of the rumen bacterium Butyrivibrio proteoclasticus B316 (T) highlights adaptation to a polysaccharide-rich environment. PLoS One 5, e11942.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Khairnar N. P., Kamble V. A. and Misra H. S. 2008 RecBC enzyme overproduction affects UV and gamma radiation survival of Deinococcus radiodurans. DNA Repair 7, 40–47.PubMedCrossRefGoogle Scholar
  58. Kim H., Jeong W., Jeoung H. Y., Song J. Y., Kim J. S., Beak J. H. et al. 2012 Complete genome sequence of Brucella abortus A13334, a new strain isolated from the fetal gastric fluid of dairy cattle. J. Bacteriol. 194, 5444.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Komatsu H., Imura Y., Ohori A., Nagata Y. and Tsuda M. 2003 Distribution and organization of auxotrophic genes on the multichromosomal genome of Burkholderia multivorans ATCC 17616. J. Bacteriol. 185, 3333–3343.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kota S., Charaka V. K., Ringgaard S., Waldor M. K. and Misra H. S. 2014a PprA contributes to Deinococcus radiodurans resistance to nalidixic acid, genome maintenance after DNA damage and interacts with deinococcal topoisomerases. PLoS One 9, e85288.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kota S., Charaka V. and Misra H. S. 2014b PprA, a pleiotropic protein for radioresistance, works through DNA gyrase and shows cellular dynamics during postirradiation recovery in Deinococcus radiodurans. J. Genet. 93, 349–354.PubMedCrossRefGoogle Scholar
  62. Kota S., Rajpurohit Y. S., Satoh K., Narumi I. and Misra H. S. 2016 DNA gyrase of Deinococcus radiodurans is characterized as type II bacterial topoisomerase and its activity is differentially regulated by PprA in vitro. Extremophiles 20, 195–205.PubMedCrossRefGoogle Scholar
  63. Kulkarni G., Dhotre D., Dharne M., Shetty S., Chowdhury S., Misra V. et al. 2013 Draft genome of Ochrobactrum intermedium strain M86 isolated from non-ulcer dyspeptic individual from India. Gut. Pathog. 5, 7.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Larsen R. A., Cusumano C., Fujioka A., Lim-Fong G., Patterson P. and Pogliano J. 2007 Treadmilling of a prokaryotic tubulin-like protein, TubZ, required for plasmid stability in Bacillus thuringiensis. Genes Dev. 21, 1340–1352.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lasocki K., Bartosik A. A., Mierzejewska J., Thomas C. M. and Jagura-Burdzy G. 2007 Deletion of the parA (soj) homologue in Pseudomonas aeruginosa causes ParB instability and affects growth rate, chromosome segregation, and motility. J. Bacteriol. 189, 5762–5772.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lee P. S., Lin D. C., Moriya S. and Grossman A. D. 2003 Effects of the chromosome partitioning protein Spo0J (ParB) on oriC positioning and replication initiation in Bacillus subtilis. J. Bacteriol. 185, 1326–1337.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Leonard T. A., Møller-Jensen J. and Löwe J. 2005 Towards understanding the molecular basis of bacterial DNA segregation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 523–535.CrossRefGoogle Scholar
  68. Le Roux F., Zouine M., Chakroun N., Binesse J., Saulnier D., Bouchier C. et al. 2009 Genome sequence of Vibrio splendidus: an abundant planctonic marine species with a large genotype diversity. Environ Microbiol. 11, 1959–1970.PubMedCrossRefGoogle Scholar
  69. Lim S. K., Kim S. J., Cha S. H., Oh Y. K., Rhee H. J., Kim M. S. et al. 2009 Complete genome sequence of Rhodobacter sphaeroides KD131. J. Bacteriol. 191, 1118–1129.PubMedCrossRefGoogle Scholar
  70. Lin D. C. and Grossman A. D. 1998 Identification and characterization of a bacterial chromosome-partitioning site. Cell 92, 675–685.PubMedCrossRefGoogle Scholar
  71. Liu X. F., Cao Y., Zhang H. L., Chen Y. J. and Hu C. J. 2015 Complete genome sequence of Vibrio alginolyticus ATCC 17749T. Genome Announc. 3, e01500–e01514.PubMedPubMedCentralGoogle Scholar
  72. Lux T. M., Lee R. and Love J. 2011 Complete genome sequence of a free-living Vibrio furnissii sp. nov.strain (NCTC 11218). J. Bacteriol. 193, 1487–1498.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lykidis A., Pérez-Pantoja D., Ledger T., Mavromatis K., Anderson I. J., Ivanova N. N. et al. 2010 The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader. PLoS One 5, e9729.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Makino K., Oshima K., Kurokawa K., Yokoyama K., Uda T., Tagomori K. et al. 2003 Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361, 743–749.PubMedCrossRefGoogle Scholar
  75. Medigue C., Krin E., Pascal G., Barbe V., Bernsel A., Bertin P. N. et al. 2005 Coping with cold: the genome of the versatile marine antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res. 15, 1325–1335.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Mercier R., Petit M. A., Schbath S., Robin S. E., Karoui M., Boccard F. et al. 2008 The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain. Cell 135, 475–485.PubMedCrossRefGoogle Scholar
  77. Michaux S., Paillisson J., Carles-Nurit M. J., Bourg G., Allardet-Servent A. and Ramuz M. 1993 Presence of two independent chromosomes in the Brucella melitensis 16 M genome. J. Bacteriol. 175, 701–705.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Minsky A., Shimoni E. and Englander J. 2006 Ring-like nucleoids and DNA repair through error-free non-homologous end joining in Deinococcus radiodurans. J. Bacteriol. 188, 6047–6051.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Misra H., Rajpurohit Y. S. and Kota S. 2013 Physiological and molecular basis of extreme radioresistance in Deinococcus radiodurans. Curr. Sci. 104, 194–206.Google Scholar
  80. Mohl D. A. and Gober J. W. 1997 Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 88, 675–684.PubMedGoogle Scholar
  81. Mohl D. A., Easter J. Jr and Gober J. W. 2001 The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol. Microbiol. 42, 741–755.PubMedCrossRefGoogle Scholar
  82. Mythili E. and Muniyappa K. 1993 Formation of linear plasmid multimers promoted by the phage lambda red-system in lon mutants of Escherichia coli. J. Gen. Microbiol. 139, 2387–2397.PubMedCrossRefGoogle Scholar
  83. Nagata Y., Ohtsubo Y., Endo R., Ichikawa N., Ankai A., Fukui S. et al. 2010 Complete genome sequence of the representative \(\upgamma \)-hexachlorocyclohexane-degrading bacterium Sphingobium japonicum UT26. J. Bacteriol. 192, 5852–5853.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Naka H., Dias G. M., Thompson C. C., Dubay C., Thompson F. L. and Crosa J. H. 2011 Complete genome sequence of the marine fish pathogen Vibrio anguillarum harboring the pJM1 virulence plasmid and genomic comparison with other virulent strains of V. anguillarum and V. ordali. Infect Immun79, 2889–2900.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Nambu T., Yamane K., Maruyama H., Mashimo C. and Yamanaka T. 2015 Complete genome sequence of Prevotella intermedia strain 17-2. Genome Announc. 3, e00951–e00915.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Ng V. H., Cox J. S., Sousa A. O., MacMicking J. D. and McKinney J. D. 2004 Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol. Microbiol. 52, 1291–1302.PubMedCrossRefGoogle Scholar
  87. Ni T., Corcoran D. L., Rach E. A., Song S., Spana E. P., Gao Y. et al. 2010 A paired-end sequencing strategy to map the complex landscape of transcription initiation. Nat. Methods 7, 521–527.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Nierman W. C., DeShazer D., Kim H. S., Tettelin H., Nelson K. E., Feldblyum T. et al. 2004 Structural flexibility in the Burkholderia mallei genome. Proc. Natl. Acad Sci. USA 101, 14246–14255.PubMedCrossRefGoogle Scholar
  89. Ohtani N., Tomita M. and Itaya M. 2010 An extreme thermophile, Thermus thermophilus, is a polyploid bacterium. J. Bacteriol. 192, 5499–5505.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Ohtani N., Tomita M. and Itaya M. 2015 Curing the megaplasmid pTT27 from Thermus thermophilus HB27 and maintaining exogenous plasmids in the plasmid-free strain. Appl. Environ. Microbiol. 82, 1437–1448.Google Scholar
  91. Ohtsubo Y., Fujita N., Nagata Y., Tsuda M., Iwasaki T. and Hatta T. 2013 Complete genome sequence of Ralstonia pickettii DTP0602, a 2,4,6-trichlorophenol degrader. Genome Announc. 1, e00903–e00913.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Okada K., Iida T., Tsukamoto K. K. and Honda T. 2005 Vibrios commonly possess two chromosomes. J. Bacteriol. 187, 752–757.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Passot F. M., Calderon V., Fichant G., Lane D. and Pasta F. 2012 Centromere binding and evolution of chromosomal partition systems in the burkholderiales. J. Bacteriol. 194, 3426–3436.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Paulsen I. T., Seshadri R., Nelson K. E., Eisen J. A., Heidelberg J. F., Read T. D. et al. 2002 The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc. Natl. Acad. Sci. USA 99, 13148–13153.PubMedCrossRefGoogle Scholar
  95. Prozorov A. A. 2008 Additional chromosomes in bacteria: properties and origin. Microbiology 77, 385–394.CrossRefGoogle Scholar
  96. Qin Q. L., Li Y., Zhang Y. J., Zhou Z. M., Zhang W. X., Chen X. L. et al. 2011 Comparative genomics reveals a deep-sea sediment-adapted life style of Pseudoalteromonas sp. SM9913. ISME J. 5, 274–284.PubMedCrossRefGoogle Scholar
  97. Ren S. X., Fu G., Jiang X. G., Zeng R., Miao Y. G., Xu H. et al. 2003 Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422, 888–892.PubMedCrossRefGoogle Scholar
  98. Ringgaard S., van Zon J., Howard M. and Gerdes K. 2009 Movement and equipositioning of plasmids by ParA filament disassembly. Proc. Natl. Acad. Sci. USA 106, 19369–19374.PubMedCrossRefGoogle Scholar
  99. Ruby E. G., Urbanowski M., Campbell J., Dunn A., Faini M., Gunsalus R. et al. 2005 Complete genome sequence ofVibrio fischeri: A symbiotic bacterium with pathogenic congeners. Proc. Natl. Acad Sci. USA 102, 3004–3009.PubMedCrossRefGoogle Scholar
  100. Schumacher M. A. 2007 Structural biology of plasmid segregation proteins. Curr. Opin. Struct. Biol. 17, 103–109.PubMedCrossRefGoogle Scholar
  101. Seo Y. S., Lim J., Choi B. S., Kim H., Goo E., Lee B. et al. 2011 Complete genome sequence of Burkholderia gladioli BSR3. J. Bacterial. 193, 3149.CrossRefGoogle Scholar
  102. Slade D. and Radman M. 2011 Oxidative stress resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. 75, 133–191.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Slater S. C., Goldman B. S., Goodner B., Setubal J. C., Farrand S. K., Nester E. W. et al. 2009 Genome sequences of three Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J. Bacteriol. 191, 2501–2511.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sobral B. W., Honeycutt R. J., Atherly A. G. and McClelland M. 1991 Electrophoretic separation of the three Rhizobium meliloti replicons. J. Bacteriol. 173, 5173–5180.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Suwanto A. and Kaplan S. 1989 Physical and genetic mapping of the Rhodobacter spahaeroides 2.4.1 genome: presence of two unique circular chromosomes. J. Bacteriol. 171, 5850–5859.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Tae H., Shallom S., Settlage R., Preston D., Adams L. G. and Garner H. R. 2011 Revised genome sequence of Brucella suis 1330. J. Bacteriol. 193, 6410.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Temperton B., Thomas S., Tait K., Parry H., Emery M., Allen M. et al. 2011 Permanent draft genome sequence of Vibrio tubiashii strain NCIMB 1337 (ATCC19106). Stand Genomic Sci. 4, 183–190.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Trucksis M., Michalski J., Deng Y. K. and Kaper J. B. 1998 The Vibrio cholerae genome contains two unique circular chromosomes. Proc. Natl. Acad. Sci. USA 95, 14464–14469.PubMedCrossRefGoogle Scholar
  109. Tsolis R. M., Seshadri R., Santos R. L., Sangari F. J., Lobo J. M., de Jong M. F. et al. 2009 Genome degradation in Brucella ovis corresponds with narrowing of its host range and tissue tropism. PLoS One 4, e5519.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Tuanyok A., Mayo M., Scholz H., Hall C. M., Allender C. J., Kaestli M. et al. 2017 Burkholderia humptydooensis sp. Nov., a new species related to Burkholderia thailandensis and the fifth member of the Burkholderia pseudomallei complex. App. Environ. Microbiol. 83, e02802.Google Scholar
  111. Vezzi A., Campanaro S., D’Angelo M., Simonato F., Vitulo N., Lauro F. M. et al. 2005 Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307, 1459–1461.PubMedCrossRefGoogle Scholar
  112. Volante A., Carrasco B., Tabone M. and Alonso J. C. 2015 The interaction of \(\upomega \)2 with the RNA polymerase \(\beta ^\prime \) subunit functions as an activation to repression switch. Nucleic Acids Res. 43, 9249–9261.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wang H., Sivonen K., Rouhiainen L., Fewer D. P., Lyra C., Rantala-Ylinen A. et al. 2012 Genome-derived insights into the biology of the hepatotoxic bloom-forming cyanobacterium Anabaena sp. strain 90. BMC Genomics 13, 613.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wang Z., Lin B., Hervey W. J. and Vora G. J. 2013 Draft genome sequence of the fast-growing marine bacterium Vibrio natriegens strain ATCC 14048. Genome Announc. 1, e00589-13.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Welsh E. A., Liberton M., Stockel J., Loh T., Elvitigala T., Wang C. et al. 2008 The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle. Proc. Natl. Acad. Sci. USA 105, 15094–15099.PubMedCrossRefGoogle Scholar
  116. White O., Eisen J. A., Heidelberg J. F., Hickey E. K., Peterson J. D., Dodson R. J. et al. 1999 Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286, 1571–1577.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wood D. W., Setubal J. C., Kaul R., Monks D. E., Kitajima J. P., Okura V. K. et al. 2001 The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294, 2317–2323.PubMedCrossRefGoogle Scholar
  118. Workentine M. L., Surette M. G. and Bernier S. P. 2014 Draft genome sequence of Burkholderia dolosa PC543 isolated from cystic fibrosis airways. Genome Announc. 13, 2.Google Scholar
  119. Yamaichi Y., Iida T., Park K. S., Yamamoto K. and Honda T. 1999 Physical and genetic map of the genome of Vibrio parahaemolyticus: presence of two chromosomes in Vibrio species. Mol. Microbiol. 31, 1513–1521.PubMedCrossRefGoogle Scholar
  120. Yamaichi Y., Fogel M. A. and Waldor M. K. 2007 par genes and the pathology of chromosome loss in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 104, 630–635.PubMedCrossRefGoogle Scholar
  121. Yanagida M. 2005 Basic mechanism of eukaryotic chromosome segregation. Philos. Trans. R. Soc. London, B 360, 609–621.CrossRefGoogle Scholar
  122. Zimmerman J. M. and Battista J. R. 2005 A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol. 5, 17.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zuleta L. F. G., Cunha C. de O., de Carvalho F. M. et al. 2014 The complete genome of Burkholderia phenoliruptrix strain BR3459a, a symbiont of Mimosa flocculosa: highlighting the coexistence of symbiotic and pathogenic genes. BMC Genomics. 15, 535.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Hari Sharan Misra
    • 1
    • 2
    Email author
  • Ganesh Kumar Maurya
    • 1
    • 2
  • Swathi Kota
    • 1
    • 2
  • Vijaya Kumar Charaka
    • 2
  1. 1.Molecular Biology DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations