Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Shell weights of foraminifera trace atmospheric CO2 from the Miocene to Pleistocene in the central Equatorial Indian Ocean

Abstract

The Maldives Sea is a region dominated by the South Asian monsoon (SAM) and at present, a CO2 source to the atmosphere. Ti/Al elemental ratios from Site U1467 and U1468 recovered from the Maldives Sea show a gradual increase from ~12 Ma and indicate terrigenous inputs to this region associated with increasing wind intensity associated with initiation of the SAM. Shell weights of planktonic foraminifera, Globigerinoides trilobus have been used to understand variations in surface water carbonate ion concentration for the last 20 Ma. Shell weights show a good correspondence with global CO2 records and show heavier shell weights during the colder periods than compared to warmer intervals which reveals that the Maldives Sea behaved similar to other tropical oceanic regions in terms of its surface water carbonate chemistry. A significant decrease in CaCO3 wt.%, decrease in foraminifera shell weights and dissolution of spines along with an increase in organic carbon (OC%) towards 10.5 Ma is linked to the reduced carbonate deposition and increased productivity during monsoon which is a feature in all tropical sediment cores. Lower shell weights and dissolution features on foraminiferal shells were observed during periods of intense Oxygen Minimum Zone (OMZ) suggesting calcite dissolution due to an increase in bottom water CO2.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3

References

  1. Aubert O and Droxler A 1992 General Cenozoic evolution of the Maldives carbonate system (equatorial Indian Ocean); Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine 16 113–136.

  2. Backman J, Raffi I, Rio D, Fornaciari E and Pälike H 2012 Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes; Newslett. Stratigr. 45(3) 221–244, https://doi.org/10.1127/0078-0421/2012/0022.

  3. Barker S and Elderfield H 2002 Foraminiferal calcification response to glacial–interglacial changes in atmospheric CO2; Science 297 833–836, http://doi.org/10.1126/science.1072815.

  4. Bartoli G, Hönisch B and Zeebe R E 2011 Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations; Paleoceanogr. 26 PA4213, https://doi.org/10.1029/2010PA002055.

  5. Beer C J, Schiebel R and Wilson P A 2010 Testing planktic foraminiferal shell weight as a surface water [CO 3 2− ] proxy using plankton net samples; Geology 38(2) 103–106, https://doi.org/10.1130/G30150.1.

  6. Betzler C, Eberli G P, Kroon D, Wright J D, Swart P K, Nath B N, Alvarez-Zarikian C A, Alonso-García M, Bialik O M, Blättler C L, Guo J A, Haffen S, Horozal S, Inoue M, Jovane L, Lanci L, Laya J C, Hui Mee A L, Lüdmann T, Nakakuni M, Niino K, Petruny L M, Pratiwi S D, Reijmer J J G, Reolid J, Slagle A L, Sloss C R, Su Xiang, Yao Z and Young J R 2016 The abrupt onset of the modern South Asian Monsoon winds; Sci. Rep. 6 29838, http://doi.org/10.1038/srep29838.

  7. Betzler C, Eberli G P, Alvarez Zarikian C A, Alonso-García M, Bialik O M, Blättler C L, Guo J A, Haffen S, Horozal S, Inoue M, Jovane L, Kroon D, Lanci L, Laya J C, Ling Hui Mee A, Lüdmann T, Nakakuni M, Nath B N, Niino K, Petruny L M, Pratiwi S D, Reijmer J J G, Reolid J, Slagle A L, Sloss C R, Su X, Swart P K, Wright J D, Yao Z and Young J R 2017 Expedition 359 summary; In: The Expedition 359 Scientists, Maldives Monsoon and Sea Level (eds) Betzler C, Eberli G P and Alvarez Zarikian C A, Proceedings of the International Ocean Discovery Program 359, https://doi.org/10.14379/iodp.proc.359.101.2017.

  8. Betzler C, Eberli G P, Lüdmann T, Reolid J, Kroon D, Reijmer J J G, Swart P K, Wright J, Young J R, Alvarez-Zarikian C A, Alonso-García M, Bialik O M, Blättler C L, Guo J A, Haffen S, Horozal S, Inoue M, Jovane L, Lanci L, Laya J C, Hui Mee A L, Nakakuni M, Nath B N, Niino K, Petruny L M, Pratiwi S D, Slagle A L, Sloss C R, Su Xiang and Yao Z 2018 Refinement of Miocene sea level and monsoon events from the sedimentary archive of the Maldives (Indian Ocean); Progr. Earth Planet. Sci. 5 5, http://doi.org/10.1186/s40645-018-0165-x.

  9. Bialik O M, Frank M, Betzler C, Zammit R and Waldmann N D 2019 Two-step closure of the Miocene Indian Ocean gateway to the Mediterranean; Sci. Rep. 9 8842, https://doi.org/10.1038/s41598-019-45308-7.

  10. Bunzel D, Schmiedl G, Lindhorst S, Mackensen A, Reolid J, Romahn S and Betzler C 2017 A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea; Clim. Past 13(12) 1791–1813, https://doi.org/10.5194/cp-13-1791-2017.

  11. Clift P D, Hodges K V, Heslop D, Hannigan R, Long H V and Calves G 2008 Correlation of Himalayan exhumation rates and Asian monsoon intensity; Nat. Geosci. 1 875–880, http://doi.org/10.1038/ngeo351.

  12. de Villiers S 2004 Occupation of an ecological niche as the fundamental control on the shell-weight of calcifying planktonic foraminifera; Mar. Biol. 144(1) 45–50, https://doi.org/10.1007/s00227-003-1183-8.

  13. de Villiers S 2005 Foraminiferal shell-weight evidence for sedimentary calcite dissolution above the lysocline; Deep-Sea Res., Part I: Oceanogr. Res. Papers 52(5) 671–680, https://doi.org/10.1016/j.dsr.2004.11.014.

  14. De Conto R M, Pollard D, Wilson P A, Pälike H, Lear C H and Pagani M 2008 Thresholds for Cenozoic bipolar glaciation; Nature 455 652–657, http://doi.org/10.1038/nature07337.

  15. Derry L A and France-Lanord C 1996 Neogene Himalayan weathering history and river 87Sr/86Sr: Impact on the marine Sr record; Earth Planet. Sci. Lett. 142 59–74, https://doi.org/10.1016/0012-821X(96)00091-X.

  16. Flower B P and Kennett J P 1994 The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling; Palaeogeogr. Palaeoclimatol. Palaeoecol. 108 537–555, https://doi.org/10.1016/0031-182(94)90251-8.

  17. Fluteau F, Ramstein G and Besse J 1999 Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model; J. Geophys. Res. 104 11,995–12,018, https://doi.org/10.1029/1999JD900048.

  18. Foster G L, Lear C H and Rae J W B 2012 The evolution of pCO2, ice volume and climate during the middle Miocene; Earth Planet. Sci. Lett. 341–344 243–254, https://doi.org/10.1016/j.epsl.2012.06.007.

  19. Goyet G, Metzl N, Millero F J, Eischeid d, Sullivan O’ and Poisson A 1998 Temporal variation of the sea surface CO2/carbonate properties in the Arabian Sea; Mar. Chem. 63 69–79, https://doi.org/10.1016/S0304-4203(98)00051-6.

  20. Greenop R, Foster G L, Wilson P A and Lear C H 2014 Middle Miocene climate instability associated with high-amplitude CO2 variability; Paleoceanography 29 845–853, https://doi.org/10.1002/2014PA002653.

  21. Gupta A K, Singh R K, Joseph S and Thomas E 2004 Indian Ocean high-productivity event (10–8 Ma): Linked to global cooling or to the initiation of the Indian monsoons?; Geology 32 753–756, https://doi.org/10.1130/G20662.1.

  22. Gupta A K, Yuvaraja A, Prakasam M, Clemens S C and Velu A 2015 Evolution of the South Asian monsoon wind system since the late Middle Miocene; Palaeogeogr. Palaeoclimatol. Palaeoecol. 438 160–167, https://doi.org/10.1016/j.palaeo.2015.08.006.

  23. Holbourn A, Kuhnt W, Schulz M and Erlenkeuser H 2005 Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion; Nature 438 483–487, https://doi.org/10.1038/nature04123.

  24. Kroon D, Steens T and Troelstra S R 1991 Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers; Proc. Ocean Drill. Prog. Sci. Res. 117 257–263, http://doi.org/10.2973/odp.proc.sr.117.126.1991.

  25. Kunkelova T, Jung S J A, de Leau E S, Odling N, Thomas A L, Betzler C, Eberli G P, Alvarez-Zarikian C A, Alonso-García M, Bialik O M, Blättler C L, Guo J A, Haffen S, Horozal S and Mee A L H 2018 A two million year record of low-latitude aridity linked to continental weathering from the Maldives; Prog. Earth Planet. Sci. 5 86, https://doi.org/10.1186/s40645-018-0238-x.

  26. Kolla V and Rao N M 1990 Sedimentary sources in the surface and near-surface sediments of the Bay of Bengal; Geo-Mar. Lett. 10(3) 129–135, https://doi.org/10.1007/978-1-4020-6646-7_5.

  27. Lindhorst S, Betzler C and Kroon D 2019 Wind variability over the northern Indian Ocean during the past 4 million years – Insights from coarse aeolian dust (IODP exp. 359, site U1467, Maldives); Palaeogeogr. Palaeoclimatol. Palaeoecol. 536 109371, https://doi.org/10.1016/j.palaeo.2019.109371.

  28. Lisiecki L E and Raymo M E 2005 A Pliocene–Pleistocene stack of 57 globally distributed benthic δ 18O records; Paleoceanogr. 20 PA1003, http://doi.org/10.1029/2004PA001071.

  29. Lyle M, Dadey K A and Farrell J W 1995 The late Miocene (11–8 Ma) Eastern Pacific carbonate crash: Evidence for reorganization of deep-water circulation by the closure of the Panama Gateway; In: Proc. Ocean Drill. Prog. Sci. Res. (eds) Pisias N G, Mayer L A, Janecek T R, Palmer-Julson A and van Andel T H, College Station TX (Ocean Drilling Program) 138 821–838, http://doi.org/10.2973/odp.proc.sr.138.157.1995.

  30. Lübbers J, Kuhnt W, Holbourn A E, Bolton C T, Gray E, Usui Y, Kochhann K G D, Beil S and Andersen N 2019 The Middle to Late Miocene ‘Carbonate Crash’ in the Equatorial Indian Ocean; Paleoceanogr. Paleoclimatol. 34 813–832, https://doi.org/10.1029/2018PA003482.

  31. Lüdmann T, Kalvelage C, Betzler C, Fürstenau J and Hübscher C 2013 The Maldives, a giant isolated carbonate platform dominated by bottom currents; Mar. Petrol. Geol. 43 326–340, http://dx.doi.org/10.1016/j.marpetgeo.2013.01.004.

  32. Martini E 1971 Standard Tertiary and Quaternary calcareous nannoplankton zonation; In: Proc. II Planktonic Conference, Roma 1970, Roma, Tecnoscienza 2 739–785.

  33. Maslin M A, Li X S, Loutre M F and Berger A 1998 The contributon of orbital forcing to the progressive intensification of Northern Hemisphere glaciation; Quat. Sci. Rev. 17 411–426, https://doi.org/10.1016/S0277-3791(97)00047-4.

  34. Miller K G, Wright J D and Fairbanks R G 1991 Unlocking the Ice House: Oligocene–Miocene oxygen isotopes, eustacy and margin erosion; J. Geophys. Res. 96 6829–6848, https://doi.org/10.1029/90JB02015.

  35. Miller K G, Kominz M A, Browning J V, Wright J D, Mountain G S, Katz M E, Sugarman P J, Cramer B S N, Christie-Blick N and Pekar S F 2005 The phanerozoic record of global sea-level change; Science 310 1293–1298, http://doi.org/10.1126/science.1116412.

  36. Murray R W and Leinen M 1996 Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean; Geochim. Cosmochim. Acta 60(20) 3869–3878.

  37. Naik S S, Naidu P D, Govil P and Godad S 2010 Relationship between weights of planktonic foraminifer shell and surface water CO 3 = concentration during the Holocene and Last Glacial period; Mar. Geol. 275 278–282, https://doi.org/10.1016/j.margeo.2010.05.004.

  38. Naik S S, Godad S P, Naidu P D and Ramaswamy V 2013 A comparision of Globigerinoides ruber calcification between upwelling and non-upwelling regions in the Arabian Sea; J. Earth Syst. Sci. 122 1153–1159, http://doi.org/10.1007/s12040-013-0330-y.

  39. Nigam R and Heriques P J 1992 Planktonic percentage of foraminiferal fauna in surface sediments of the Arabian Sea (Indian Ocean) and a regional model for paleodepth determination; Palaeogeogr. Palaeoclimatol. Palaeoecol. 91(1–2) 89–98.

  40. Pagani M, Arthur M A and Freeman K H 1999 Miocene evolution of atmospheric carbon dioxide; Paleoceanogr. 14 273–292, http://doi.org/10.1029/1999PA900006.

  41. Paulmier A, Ruiz-Pino D and Garçon V 2011 CO2 maximum in the oxygen minimum zone (OMZ); Biogeosci. 8 239–252, http://doi.org/10.5194/bg-8-239-2011.

  42. Purdy E G and Bertram G T 1993 Carbonate concepts from the Maldives, Indian Ocean; AAPG Stud. Geology 34 7–55, https://doi.org/10.1306/St34568.

  43. Raffi I, Backman J, Fornaciari E, Pälike H, Rio D, Lourens L and Hilgen F 2006 A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years; Quat. Sci. Rev. 25 3113–3137; https://doi.org/10.1016/j.quascirev.2006.07.007.

  44. Ramstein G, Fluteau F, Besse J and Joussaume S 1997 Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years; Nature 386 788–795, https://doi.org/10.1038/386788a0.

  45. Raymo M E 1994 The Himalayas, organic carbon burial, and climate in the Miocene; Paleoceanogr. 9 399–404, https://doi.org/10.1029/94PA00289.

  46. Sarma V V S S 2003 Monthly variablity in surface pCO2 and net air-sea CO2 flux in the Arabian Sea; J. Geophys. Res. 108https://doi.org/10.1029/2001JC001062.

  47. Sarma V V S S, Lenton A, Law R M, Metzl N, Patra P K, Doney S, Lima L D, Dlugokencky E, Ramonet M and Valsala V 2013 Sea–air CO2 fluxes in the Indian Ocean between 1990 and 2009; Biogeosciences 10 7035–7052, https://doi.org/10.5194/bg-10-7035-2013.

  48. Schulte S, Rostek F, Bard E, Rullkötter J and Marchal O 1999 Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea; Earth Planet. Sci. Lett. 173 205–221, https://doi.org/10.1016/S0012-821X(99)00232-0.

  49. Sosdian S M, Greenop R, Hain M P, Foster G L, Pearson P N and Lear C H 2018 Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy; Earth Planet. Sci. Lett. 498 362–376, https://doi.org/10.1016/j.epsl.2018.06.017.

  50. Takahashi T, Sutherland S C, Wanninkhof R, Sweeney C, Feely R A, Chipman D W, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker D C E, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson T S, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong C S, Delille B, Bates N R and de Baar H J W 2009 Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans; Deep-Sea Res. II 56 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009.

  51. Tomczak M and Godfrey J S 2003 Regional oceanography: An introduction; Daya Publishing House, New Delhi, India, 401p, http://doi.org/10.1016/B978-0-08-041021-0.50010-2.

  52. Tripathi S, Tiwari M, Lee J, Khim B-K and IODP Expedition 355 Scientists 2017 First evidence of denitrification vis-à-vis monsoon in the Arabian Sea since Late Miocene; Sci. Rep. 7 43056, http://doi.org/10.1038/srep43056.

  53. van Hinsbergen D J J, de Groot L V, van Schaik S J, Spakman W, Bijl P K, Sluijs A, Langereis C G and Brinkhuis H 2015 A Paleolatitude calculator for paleoclimate studies; PLoS ONE 10 1–21, https://doi.org/10.1371/journal.pone.0126946.

  54. Vincent E and Berger W H 1985 Carbon dioxide and polar cooling in the Miocene: The Monterey hypothesis; In: The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present (eds) Sundquist E T and Broecker W S, American Geophysical Union, Washington DC, pp. 455–468, https://doi.org/10.1029/GM032p0455.

  55. Zhisheng A, Kutzbach J E, Prell W L and Porter S C 2001 Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times; Nature 411 62–66, http://doi.org/10.1038/35075035.

Download references

Acknowledgements

We thank IODP for the core samples and IODP-India for funding this study. This is NIO contribution No. 6476. This is IODP-India grant number NCAOR/IODP/2017/8. We thank Mascarenhas-Pereira M B L for the ICP facility.

Author information

Correspondence to Sushant S Naik.

Additional information

Communicated by N V Chalapathi Rao

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mungekar, T.V., Naik, S.S., Nath, B.N. et al. Shell weights of foraminifera trace atmospheric CO2 from the Miocene to Pleistocene in the central Equatorial Indian Ocean. J Earth Syst Sci 129, 69 (2020). https://doi.org/10.1007/s12040-020-1348-6

Download citation

Keywords

  • Maldives Sea
  • Equatorial Indian Ocean
  • shell weight
  • foraminifera
  • pCO2
  • South Asian monsoon