Advertisement

Assimilation of INSAT-3D imager water vapour clear sky brightness temperature in the NCMRWF’s assimilation and forecast system

  • S Indira RaniEmail author
  • Ruth Taylor
  • Priti Sharma
  • M T Bushair
  • Buddhi Prakash Jangid
  • John P George
  • E N Rajagopal
Article
  • 24 Downloads

Abstract

This paper describes the direct assimilation of water vapour (WV) clear sky brightness temperatures (CSBTs) from the INSAT-3D imager in the National Centre for Medium Range Weather Forecasting (NCMRWF) Unified Model (NCUM) assimilation and forecast system. INSAT-3D imager WV CSBTs show a systematic bias of 2–3 K compared to the data simulated from the model first guess fields in the pre-assimilation study. The bias in the INSAT-3D imager WV CSBTs is removed using a statistical bias correction prior to assimilation. The impact of INSAT-3D imager WV channel CSBTs is investigated through different approaches: (i) single observation experiments and (ii) global assimilation experiments using the hybrid-four-dimensional variational technique. Single observation experiments of channels of the same frequency from different instruments like the INSAT-3D imager and sounder, and the Meteosat visible and infrared imager (MVIRI) onboard Meteosat-7, show the INSAT-3D imager and MVIRI WV channels have a similar impact on the analysis increment. Global assimilation clearly shows the positive impact of the INSAT-3D imager WV CSBTs on the humidity and upper tropospheric wind fields, whereas the impact on the temperature field, particularly over the tropics, is neutral. Validation of model forecasted parameters with the in situ radio sonde observations also showed the positive impact of assimilation on the humidity and wind fields. INSAT-3D imager WV CSBTs have been assimilated operationally in NCUM since August 2018.

Keywords

INSAT-3D WV CSBT hybrid-4DVAR NCUM NWP 

Notes

Acknowledgements

The authors acknowledge the funding provided by the National Monsoon Mission (NMM) of the Ministry of Earth Sciences (MoES) for the visiting scientist programme from September 2014 to March 2015. The authors also acknowledge SAC scientists for providing the INSAT-3D CSBT data for carrying out this study and also for the near-real time availability of the product for operational assimilation. The authors acknowledge their heartfelt gratitude to the anonymous reviewer for the valuable comments which helped to improving the content of this paper.

References

  1. Auligne T, McNally A P and Dee D P 2007 Adaptive bias correction for satellite data in a numerical weather prediction system; Quart. J. Roy. Metereol. Soc. 133 631–642,  https://doi.org/10.1002/qj.56.CrossRefGoogle Scholar
  2. Bell W, English S J, Candy B, Atkinson N, Hilton F, Baker N, Swadley S D, Campbell W F, Bormann N, Kelly G and Kazumori M 2008 The assimilation of SSMIS radiances in numerical weather prediction models; IEEE Trans. Geosci. Remote Sens. 46(4) 884–900.CrossRefGoogle Scholar
  3. Clayton A M, Lorenc A C and Barker D M 2013 Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met office; Quart. J. Roy. Metereol. Soc. 139 1445–1461,  https://doi.org/10.1002/qj.2054.CrossRefGoogle Scholar
  4. Das Gupta M, Priti S and Rani S I 2015 Validation of INSAT-3D atmospheric motion vectors; NMRF/RR/01/2015, 27p.Google Scholar
  5. Deb S K, Kumar P, Kiran Kumar A S, Pal P K, Kaushik N and Sangar G 2015 Atmospheric motion vectors from INSAT-3D: Initial quality assessment and its impact on track forecast of cyclonic storm Nanauk; Atmos. Res. 169 1–16,  https://doi.org/10.1016/j.atmosres.2015.09.010.CrossRefGoogle Scholar
  6. Doherty A, Atkinson N, Bell W and Smith A 2015 An assessment of data from the advanced technology microwave sounder at the Met office; Adv. Meteorol. 2015 1–16, Article ID 956920, http://dx.doi.org/10.1155/2015/956920.
  7. George J P, Rani S I, Jayakumar A, Mohandas S, Mallick S, Lodh A, Rakhi R, Sreevathsa M N R and Rajagopal E N 2016 NCUM data assimilation system; NMRF/TR/01/2016, 20p.Google Scholar
  8. Harris B and Kelly G 2001 A satellite radiance bias correction scheme for data assimilation; Quart. J. Roy. Meteorol. Soc. 127 1453–1468.CrossRefGoogle Scholar
  9. Honda T, Miyoshi T, Lien G, Nishizawa S, Yoshid R, Adachi SA, Terasaki K, Okamoto K, Tomita H and Bessho K 2018 Assimilating all-sky Himawari-8 satellite radiances: A case of Typhoon Soudelor (2015); Mon. Weather Rev. 146 213–229,  https://doi.org/10.1175/mwr-d-16-0357.1.CrossRefGoogle Scholar
  10. Kelkar R R 2019 Satellite meteorology in India: Its beginning, growth and future; Mausam 70(1) 1–14.Google Scholar
  11. Kopken C, Kelly G and Thepaut J N 2004 Assimilation of Meteosat radiance data within the 4D-Var system at ECMWF: Assimilation experiments and forecast model; Quart. J. Roy. Metereol. Soc. 130 2277–2292.CrossRefGoogle Scholar
  12. Kumar P, Deb S K, Kishtawal C M and Pal P K 2016 Impact of assimilation of INSAT-3D retrieved atmospheric motion vectors on short-range forecast of summer monsoon 2014 over the south Asian region; Theor. Appl. Climatol.,  https://doi.org/10.1007/s00704-015-1722-5.CrossRefGoogle Scholar
  13. Kumar S, Rani S I, George J P and Rajagopal E N 2018 Megha-tropiques SAPHIR radiances in a hybrid 4D-Var data assimilation system: Study of forecast impact; Quart. J. Roy. Metereol. Soc.,  https://doi.org/10.1002/qj.3251.CrossRefGoogle Scholar
  14. Kurzrock F, Cros S, Ming F C, Otkin J A, Hutt A, Linguet L, Lajoie G and Potthast R 2018 A review of the use of geostationary satellite observations in regional-scale models for short-term cloud forecasting; Meteorol. Z. 27(4) 277–298.CrossRefGoogle Scholar
  15. Lorenc A C 2003a Modelling of error covariances by four dimensional variational data assimilation; Quart. J. Roy. Metereol. Soc. 129 3167–3182,  https://doi.org/10.1256/qj.02.131.CrossRefGoogle Scholar
  16. Lorenc A C 2003b The potential of the ensemble Kalman filter for NWP: A comparison with 4D-Var; Quart. J. Roy. Metereol. Soc. 129 3183–3203,  https://doi.org/10.1256/qj.02.132.CrossRefGoogle Scholar
  17. Lorenc A C, Bowler N, Clayton A M, Pring A R and Fairbairn D 2015 Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP; Mon. Weather Rev. (Sixth WMO data assimilation symposium special collection),  https://doi.org/10.1175/MWR-D-14-00195.1.CrossRefGoogle Scholar
  18. Lu Q, Bell W, Bauer P, Bormann N and Peubey C 2011 Characterizing the FY-3A microwave temperature sounder using the ECMWF model; J. Atmos. Ocean Tech. 28(11) 1373–1389.CrossRefGoogle Scholar
  19. Munro R, Kopken C, Kelly G, Thepaut J N and Saunders R 2004 Assimilation of Meteosat radiance data within the 4D-Var system at ECMWF: Data quality monitoring, bias correction and single cycle experiments; Quart. J. Roy. Metereol. Soc. 130 2293–2313.CrossRefGoogle Scholar
  20. Prasad V S 2012 Conversion of NCEP decoded data to UK MET office Obstore format; NCMR/OB/1/2012.Google Scholar
  21. Prasad V S 2014 Satellite data processing for NCMRWF unified model (NCUM); NMRF/RR/2/2014.Google Scholar
  22. Prasad V S and Rani S I 2014 Data pre-processing for NCMRWF unified model (NCUM): Version 2; NMRF/RR/01/2014, 19p.Google Scholar
  23. Rabier F 2005 Overview of global data assimilation developments in numerical weather-prediction centres; Quart. J. Roy. Metereol. Soc. 131 3215–3233,  https://doi.org/10.1256/qj.05.129.CrossRefGoogle Scholar
  24. Rawlins F, Ballard S P, Bovis K J, Clayton A M, Li D, Inverarity G W, Lorenc A C and Payne T J 2007 The Met office global 4-dimensional variational data assimilation system; Quart. J. Roy. Metereol. Soc. 133 347–362,  https://doi.org/10.1002/qj.32.CrossRefGoogle Scholar
  25. Rajagopal E N, Iyengar G R, George J P, Das Gupta M, Mohandas S, Siddharth R, Gupta A, Chourasia M, Prasad V S, Aditi S K and Ashish A 2012 Implementation of the UM model based analysis – Forecast system at NCMRWF; NMRF/TR/2012, 45p.Google Scholar
  26. Rani S I and Prasad V S 2013 Simulation and Validation of INSAT-3D Sounder Data at NCMRWF; https://cimss.ssec.wisc.edu/itwg/itsc/itsc19/program/papers/1_08_rani.pdf.
  27. Rani S I and Das Gupta M 2014 An inter-comparison of Kalpana-1 and Meteosat-7 atmospheric motion vectors against radiosonde winds and NWP forecasts during monsoon 2011; Meteorol. Appl. 21 820–830,  https://doi.org/10.1002/met.1411.CrossRefGoogle Scholar
  28. Rani S I, Taylor R, George J P and Rajagopal E N 2016 Use of INSAT-3D sounder and imager radiances in the 4D-VAR data assimilation system and its implications in the analyses and forecasts; Proc. SPIE 9876 98761G-1,  https://doi.org/10.1117/12.2223496.CrossRefGoogle Scholar
  29. Rao P A, Velden C S and Braun S A 2002 The vertical error characteristics of GOES-derived winds: Description and experiments with numerical weather prediction; J. Appl. Meteorol. 41 253–271.CrossRefGoogle Scholar
  30. Saunders R, Matricardi M, Geer A, Rayer P, Embury O and Merchant C 2010 RTTOV9 science and validation plan; NWPSAF-MO-TV-020, 2010, http://nwpsaf.eu/oldsite/deliverables/rtm/rttov9_files/rttov9_svr.pdf.
  31. Sharma P, Rani S I and Das Gupta M 2016 Validation of INSAT-3D atmospheric motion vectors for monsoon 2015; Proc. SPIE 9881 988125-1,  https://doi.org/10.1117/12.2223564.CrossRefGoogle Scholar
  32. Singh R, Pal P K and Joshi P C 2010 Assimilation of Kalpana very high resolution radiometer water vapor channel radiances into a mesoscale model; J. Geophys. Res. 115 D18124,  https://doi.org/10.1029/2010jd014027.CrossRefGoogle Scholar
  33. Singh R, Ojha SP, Kishtawal CM, Pal PK and Kiran Kumar AS 2016 Impact of the assimilation of INSAT-3D radiances on short-range weather forecasts; Quart. J. Roy. Metereol. Soc. 142 120–131.CrossRefGoogle Scholar
  34. Stengel M 2008 Assimilation of SEVIRI’s Water Vapour Channel Observations in Clear-Sky Conditions into the HIRLAM Model; Technical Report No. 68.Google Scholar
  35. Szyndel M D E, Thepaut J N and Kelly G 2005 Evaluation of potential benefit of SEVIRI water vapour radiance data from Meteosat-8 into global numerical weather prediction analyses; Atmos. Sci. Lett. 6 105–111.CrossRefGoogle Scholar
  36. Thepaut J N 2003 Satellite data assimilation in numerical weather prediction: An overview; In: Proceedings of ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, ECMWF, Reading, UK, 8–12 September 2003, pp. 75–96.Google Scholar
  37. Trigo I F and Viterbo P 2003 Clear-sky window channel radiances: A comparison between observations and the ECMWF model; J. Appl. Meteorol. 42 1463–1479.CrossRefGoogle Scholar
  38. Velden C S, Niemann S J, Menzel W P and Wanzong S T 1997 Upper tropospheric winds derived from geostationary satellite water vapour observations; Bull. Am. Meteorol. Soc. 78 173–195.CrossRefGoogle Scholar
  39. Yang C, Liuz Z, Gao F, Child PP and Min J 2017 Impact of assimilation goes imager clear-sky radiance with a rapid refresh assimilation system for convection-permitting forecast over Mexico; J. Geophys. Res.: Atmos. 122 5472–5490.  https://doi.org/10.1002/2016jd026436.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • S Indira Rani
    • 1
    Email author
  • Ruth Taylor
    • 2
  • Priti Sharma
    • 1
  • M T Bushair
    • 1
  • Buddhi Prakash Jangid
    • 1
  • John P George
    • 1
  • E N Rajagopal
    • 1
  1. 1.National Centre for Medium Range Weather Forecasting (NCMRWF)Ministry of Earth Sciences (MoES)NoidaIndia
  2. 2.Satellite ApplicationsMet OfficeExeterUK

Personalised recommendations