Advertisement

Multi-model assessment of trends, variability and drivers of terrestrial carbon uptake in India

  • Ananya S RaoEmail author
  • Govindasamy Bala
  • N H Ravindranath
  • Rama Nemani
Article
  • 54 Downloads

Abstract

A multi-model-based assessment is made to assess the trends and variability in the land carbon uptake in India during the period 1901–2010. Data from nine models, used in a recent land surface model inter-comparison project called TRENDY, are used for this purpose. Our analysis is focused on the trends and variability in the net primary productivity (NPP), net ecosystem productivity (NEP) and net ecosystem exchange (NEE). The multi-model mean NPP shows a positive trend of 2.03% per decade during this period. The NEP, which is the difference between NPP and heterotrophic respiration, has a mean value of \(-\,0.138\,\pm \,0.086\,\hbox {Pg}\,\hbox {C}\,\hbox {yr}^{-1}\) over this region. According to our analysis of TRENDY multi-models, the inter-annual variation in NPP and NEP is strongly driven by precipitation, but remote drivers such as El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) do not have a strong influence. The water use efficiency (WUE) shows an increase of about 25% over the 110-yr period. Our multi-model-based estimate of the cumulative NEE is \(0.613\,\pm \,0.1\,\hbox {Pg} \,\hbox {C}\) during 1901–2010, indicating that the Indian terrestrial ecosystem was neither a strong source nor a significant sink during this period. However, we caution that our conclusion is based on a limited set of offline land models, and the results presented here have large uncertainties due to model resolution and parameterisation of various land surface processes, the inadequate validation procedures and the use of limited number of models and land use change data sets. Further investigations using more observational data, rigorous validation using extensive observational data sets and a set of comprehensive coupled models that include several feedbacks between land, atmosphere, ocean and the cryosphere are needed to assess the robustness of our results.

Keywords

TRENDY multi-model regional carbon cycle trends in NPP NEP over India water use efficiency 

Notes

Acknowledgements

We thank the consortium of TRENDY modellers, S Sitch, P Friedlingstein, N Gruber, S D Jones, G Murray-Tortarolo, A Ahlström, S C Doney, H Graven, C Heinze, C Huntingford, S Levis, P E Levy, M Lomas, B Poulter, N Viovy, S Zaehle, N Zeng, A Arneth, G Bonan, L Bopp, J G Canadell, F Chevallier, P Ciais, R Ellis, M Gloor, P Peylin, S L Piao, C Le Quéré, B Smith, Z Zhu and R Myneni, for providing us access to the TRENDY model outputs. We thank G Murray-Tortarolo for providing us links to the TRENDY model data set. We also thank Ms Indu K Murthy for her valuable suggestions and proofreading of the paper. A S Rao acknowledges the scholarship provided by the Indian Institute of Science.

Supplementary material

12040_2019_1120_MOESM1_ESM.pdf (945 kb)
Supplementary material 1 (pdf 945 KB)

References

  1. Bala G, Gopalakrishnan R, Jayaraman M, Nemani R and Ravindranath N H 2011 \(\text{ CO }_{2}\)-fertilization and potential future terrestrial carbon uptake in India; Mitig. Adapt. Strat. Gl. 16 143–160.Google Scholar
  2. Bala G, Joshi J, Chaturvedi R K, Gangamani H V, Hashimoto H and Nemani R 2013 Trends and variability of AVHRR-derived NPP in India; Remote Sens. 5 810–829,  https://doi.org/10.3390/rs5020810.
  3. Banger K, Tian H, Tao B, Ren W, Pan S, Dangal S and Yang J 2015 Terrestrial net primary productivity in India during 1901–2010: Contributions from multiple environmental changes; Clim. Change Springer,  https://doi.org/10.1007/s10584-015-1448-5.
  4. Basha G, Kishore P, Venkat Ratnam M, Jayaraman A, Kouchak A A, Ouarda T B M J and Velicogna I 2017 Historical and projected surface temperature over India during the 20th and 21st century; Sci. Rep. 7 2987,  https://doi.org/10.1038/s41598-017-02130-3.CrossRefGoogle Scholar
  5. Beer C, Reichstein M and Tomelleri E et al. 2010 Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate; Science 329 834–838,  https://doi.org/10.1126/science.1184984.CrossRefGoogle Scholar
  6. Boden T A, Marland G and Andres R J 2016 Global regional and national fossil-fuel \(\text{ CO }_{2}\) emissions; Report by Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, USA,  https://doi.org/10.3334/CDIAC/00001_V2016.
  7. Bolin B, Sukumar R, Ciais P, Cramer W, Jarvis P, Kheshgi H, Nobre C, Semenov S and Steffen W 2000 Global perspective; In: IPCC land use land-use change and forestry a special report of the IPCC (eds) Watson R T, Noble I R, Bolin B, Ravindranath N H, Verardo D J and Dokken D J, Cambridge University Press, pp. 23–51.Google Scholar
  8. Brown S et al. 1993 Geographical distributions of carbon in biomass and soils of tropical Asian forests; Geocarto Int. 4 45–59.Google Scholar
  9. Canadell J G 2011 An international effort to quantify regional carbon fluxes; Eos: Earth Space Sci. News 92(10) 81–88.CrossRefGoogle Scholar
  10. Cervarich M, Shu S, Jain A K, Arneth A, Canadell J, Friedlingstein P, Houghton R A, Kato E, Koven C, Patra P, Poulter B, Sitch S, Stocker B, Viovy N, Wiltshire A and Zeng N 2016 The terrestrial carbon budget of south and Southeast Asia; Environ. Res. Lett. 11,  https://doi.org/10.1088/1748-9326/11/10/105006.
  11. Chhabra A and Dadhwal V K 2004a Estimating terrestrial net primary productivity over India using satellite data; Curr. Sci. 86(2) 269–271.Google Scholar
  12. Chhabra A and Dadhwal V K 2004b Assessment of major pools and fluxes of carbon in Indian forests; Clim. Change 64 341–360.CrossRefGoogle Scholar
  13. Cramer W et al. 1999 Comparing global models of terrestrial net primary productivity (NPP): Overview and key results; Global Change Biol. 5(S1) 1–15,  https://doi.org/10.1046/j.1365-2486.1999.00009.x.CrossRefGoogle Scholar
  14. Dadhwal V K 2012 Assessment of Indian carbon cycle components using earth observation systems and ground inventory; ISPRS Arch. XXXIX-B8 249–254.Google Scholar
  15. Dekker S C, Groenendijk M, Booth Ben B B, Huntingford C and Cox P M 2016 Spatial and temporal variations in plant water-use efficiency inferred from tree-ring eddy covariance and atmospheric observations; Earth Syst. Dyn. 7 525–533,  https://doi.org/10.5194/esd-7-525-2016.CrossRefGoogle Scholar
  16. Dentener F, Stevenson D, Ellingsen K, van Noije T, Schultz M, Amann M, Atherton C, Bell N, Bergmann D, Bey I, Bouwman L, Butler T, Cofala J, Collins B, Drevet J, Doherty R, Eickhout B, Eskes H, Fiore A, Gauss M, Hauglustaine D, Horowitz L, Isaksen I S A, Josse B, Lawrence M, Krol M, Lamarque J F, Montanaro V, Muller J F, Peuch V H, Pitari G, Pyle J, Rast S, Rodriguez J, Sanderson M, Savage N H, Shindell D, Strahan S, Szopa S, Sudo K, Van Dingenen R, Wild O and Zeng G 2006 The global atmospheric environment for the next generation; Environ. Sci. Technol. 40 3586–3594,  https://doi.org/10.1021/es0523845.CrossRefGoogle Scholar
  17. Devaraju N, Bala G, Caldeira K and Nemani R 2015 A model based investigation of the relative importance of \(\text{ CO }_{2}\)-fertilization climate warming nitrogen deposition and land use change on the global terrestrial carbon uptake in the historical period; Clim. Dyn. https://doi.org/10.1007/s00382-015-2830-8.
  18. Feng Xiahong 1999 Trends in intrinsic water-use efficiency of natural trees for the past 100–200 years: A response to atmospheric \(\text{ CO }_{2}\) concentration; Geochim. Cosmochim. Acta 63(13/14) 1891–1903,  https://doi.org/10.1016/S0016-7037(99)00088-5. Google Scholar
  19. Gadgil S 2003 The Indian monsoon and its variability; Annu. Rev. Earth Planet. Sci. 31 429–467.CrossRefGoogle Scholar
  20. Gebremichael M and Barros A P 2006 Evaluation of MODIS gross primary productivity (GPP) in tropical monsoon regions; Remote Sens. Environ. 100 150–166.CrossRefGoogle Scholar
  21. Goroshi S, Singh R P, Pradhan R and Singh Parihar J 2014 Assessment of net primary productivity over India using Indian geostationary satellite (INSAT-3A) data; ISPRS Arch. XL-8.Google Scholar
  22. Gregory J M, Jones C D, Cadule P and Friedlingstein P 2009 Quantifying carbon cycle feedbacks; J. Clim. 22 5232–5250,  https://doi.org/10.1175/2009JCLI2949.1.CrossRefGoogle Scholar
  23. Haverd V, Raupach M R, Briggs P R, Canadell J G, Davis S J, Law R M, Meyer C P, Peters G P, Pickett-Heaps C and Sherman B 2013 The Australian terrestrial carbon budget; Biogeosci. 10 851–869,  https://doi.org/10.5194/bg-10-851-2013.CrossRefGoogle Scholar
  24. Heinsch F A and Zhao M et al. 2006 Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations; IEEE Trans. Geosci. Remote Sens. 44 1908–1925.CrossRefGoogle Scholar
  25. Hingane L S 1991 Some aspects of carbon dioxide exchange between atmosphere and Indian plant biota; Clim. Change 18 425–435.CrossRefGoogle Scholar
  26. Houghton R A et al. 2012 Carbon emissions from land use and land-cover change, Biogeosci. 9(12) 5125–5142,  https://doi.org/10.5194/bg-9-5125-2012.CrossRefGoogle Scholar
  27. ISFR 2015 India State of Forest Report, http://fsi.nic.in/isfr-2015/isfr-2015-executive-summary.pdf.
  28. Ito A and Inatomi M 2012 Water-use efficiency of the terrestrial biosphere: A model analysis focusing on interactions between the global carbon and water cycles; Am. Meterol. Soc. 13 681–694,  https://doi.org/10.1175/JHM-D-10-050341.CrossRefGoogle Scholar
  29. Jain Sharad K and Kumar V 2012 Trend analysis of rainfall and temperature data for India; Curr. Sci. 102(1) 37–49.Google Scholar
  30. Joshi P K, Roy P S, Singh S, Agrawal S and Yadav D 2006 Vegetation cover mapping in India using multi-temporal IRS wide field sensor (WiFS) data; Remote Sens. Environ. 103 190–202,  https://doi.org/10.1016/j.rse.2006.04.010.CrossRefGoogle Scholar
  31. Kaul M, Dadhwal V K and Mohren G M J 2009 Land use change and net C flux in Indian forests; For. Ecol. Manag. 258 100–108,  https://doi.org/10.1016/jforeco200903049.CrossRefGoogle Scholar
  32. Kicklighter D W, Bondeau A, Schloss A L, Kaduk J, Mcguire A D and the participants of the Potsdam NPP model intercomparison 1999 Comparing global models of terrestrial net primary productivity (NPP): Global pattern and differentiation by major biomes; Glob. Change Biol. 5(suppl 1) 16–24.Google Scholar
  33. Kumar K K, Rajagopalan B, Hoerling M, Bates G and Cane M 2006 Unraveling the mystery of Indian monsoon failure during El Nino; Science 314 115–119.  https://doi.org/10.1126/science.1131152.CrossRefGoogle Scholar
  34. Le Quere C, Andres R J and Boden T et al. 2013 The global carbon budget 1959–2011; Earth Syst. Sci. Data 5 165–185,  https://doi.org/10.5194/essd-5-165-2013.CrossRefGoogle Scholar
  35. Maignan F, Breon F M, Chevallier F, Viovy N, Ciais P, Garrec C, Trules J and Mancip M 2011 Evaluation of a global vegetation model using time series of satellite vegetation indices; Geosci. Model Dev. 4 1103–1114,  https://doi.org/10.5194/gmd-4-1103-2011.CrossRefGoogle Scholar
  36. Marlon J R et al. 2009 Wildfire responses to abrupt climate change in North America; Proc. Natl. Acad. Sci. 106(8),  https://doi.org/10.1073/pnas.0808212106.
  37. Moeletsi M E and Walker S 2012 Evaluation of NASA satellite and modelled temperature data for simulating maize water requirement satisfaction index in the free state province of South Africa; Phys. Chem. Earth. 50–52 157–164,  https://doi.org/10.1016/j.pce.2012.08.012.CrossRefGoogle Scholar
  38. NATCOM2 Report 2012 Second National Communication to the United Nations Framework Convention on Climate Change India, Ministry of Environment & Forests Government of India, http://unfccc.int/resource/docs/natc/indnc2.pdf.
  39. Nayak R K, Patel N R and Dadhwal V K 2010 Estimation and analysis of terrestrial net primary productivity over India by remote-sensing-driven terrestrial biosphere model; Environ. Monit. Assess. 170 195–213.  https://doi.org/10.1007/s10661-009-1226-9.CrossRefGoogle Scholar
  40. Nayak R K, Dadhwal V K, Patel N R and Dutt C B S 2011 Inter-annual variability of net ecosystem productivity over India; ISPRS Arch. XXXVIII-8/W20.Google Scholar
  41. Nayak R K, Patel N R and Dadhwal V K 2013 Inter-annual variability and climate control of terrestrial net primary productivity over India; Int. J. Climatol. 33 132–142,  https://doi.org/10.1002/joc.3414.CrossRefGoogle Scholar
  42. Nayak R K, Patel N R and Dadhwal V K 2015 Spatio-temporal variability of net ecosystem productivity over India and its relationship to climatic variables; Environ. Earth Sci. 74 1743–1753,  https://doi.org/10.1007/s12665-015-4182-4.CrossRefGoogle Scholar
  43. Nayak R K et al. 2016 Terrestrial net primary productivity and net ecosystem productivity over India; Report by National Remote Sensing Centre, Balanagar, Hyderabad.Google Scholar
  44. Nemani R R, Keeling C D, Hashimoto H, Jolly J M, Piper S C, Tucker C J, Myneni R B and Running S W 2003 Climate-driven increases in Global terrestrial net primary production from 1982 to 1999; Sci. China C 300 1560–1563.Google Scholar
  45. Oleson K W et al. 2010 Technical description of version 4.0 of the community land model (CLM); Report by Climate and Global Dynamics Division NCAR.Google Scholar
  46. Panigrahy R K, Panigrahy S and Parihar J S 2004 Spatio-temporal pattern of Agro Ecosystem Net Primary Productivity of India: A preliminary analysis using SPOT VGT data, Indian Space Research Organization Report, Commission IV, WG IV/10.Google Scholar
  47. Parthasarathy B, Munot A A and Kothawale D R 1995 All India monthly and seasonal rainfall series: 1871–1993; Theor. Appl. Climatol. 49 217–224.CrossRefGoogle Scholar
  48. Patra P K, Canadell J G and Houghton R A et al. 2013 The carbon budget of South Asia; Biogeosciences 10 513–527.  https://doi.org/10.5194/bg-10-513-2013.CrossRefGoogle Scholar
  49. Piao S, Sitch S, Ciais P, Friedlingstein P, Peylin P, Wang X, Ahlstrom A, Anav A, Canadell J G, Huntingford C, Jung M, Levis S, Levy P E, Lomas M R, Lu M, Luo Y, Myneni R B, Poulter B, Wang T, Viovy N, Zaehle S and Zeng N 2013 Evaluation of terrestrial carbon cycle models for their sensitivity to climate variability and the observed rise in atmospheric CO2 abundance; Glob. Change Biol. https://doi.org/10.1111/gcb.12187.
  50. Prakash S et al. 2015 Seasonal intercomparison of observational rainfall datasets over India during the southwest monsoon season; Int. J. Climatol. 35(9) 2326–2338.  https://doi.org/10.1002/joc.4129.CrossRefGoogle Scholar
  51. Prasad M R, Singh A P and Singh B 2000 Yield water-use efficiency and potassium uptake by summer mungbean as affected by various levels of potassium and moisture stress; J. Integrated Soc. Sci. 48(4) 827–828.Google Scholar
  52. Raut S, Sarma K S S and Das D K 2001 Evaluation of irrigation management in a canal command area based on agrometeorology and remote sensing; J. Ind. Soc. Remote Sens. 29(4) 225–228.CrossRefGoogle Scholar
  53. Ravindranath N H, Somashekhar B S and Gadgil M 1997 Carbon flow in Indian forests; Clim. Change 35 297–320.CrossRefGoogle Scholar
  54. Saini S and Gulati A 2014 El Niño and Indian Droughts – A scoping exercise working paper 276; Report by Indian Council for Research on International Economic Relations, http://www.icrier.org/pdf/working_paper_276.pdf.
  55. Saji N H, Goswami B N, Vinayachandran P N and Yamagata T 1999 A dipole mode in the tropical Indian ocean; Nature 401.Google Scholar
  56. Schimel D S, House J I, Hibbard K A, Bousquet P and Ciais P et al. 2001 Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems; Nature 414 169–172.CrossRefGoogle Scholar
  57. Schimel D, Stephens B B and Fisher J B 2015 Effect of increasing \(\text{ CO }_{2}\) on the terrestrial carbon cycle; Proc. Nat. Acad. Sci. 112(2) 436–441,  https://doi.org/10.1073/pnas.1407302112.Google Scholar
  58. Schulze E-D, Wirth C and Heimann M 2000 Climate change: Managing forests after Kyoto; Science 289 2058–2059,  https://doi.org/10.1126/science.289.5487.2058.CrossRefGoogle Scholar
  59. Sharma B R, Rao K V, Vittal K P R, Rammakrishna Y S and Amarasinghe U 2010 Estimating the potential of rain-fed agriculture in India: Prospects for water productivity improvements; Agric. Water Manag. 97(1) 23–30.CrossRefGoogle Scholar
  60. Sharma B, Molden D and Cook S 2015 Water use efficiency in agriculture: Measurement current situation and trends, book chapter; In: Managing water and fertilizer for sustainable agricultural intensification (eds) Drechsel P, Heffer P, Magen H, Mikkelsen R and Wichelns D, pp. 39–64.Google Scholar
  61. Singh R P, Rovshan S, Goroshi S K, Panigrahy S and Parihar J S 2011 Spatial and temporal variability of net primary productivity (NPP) over terrestrial biosphere of India using NOAA-AVHRR based GloPEM model; Indian Soc. Remote Sens. 39(3) 345–353,  https://doi.org/10.1007/s12524-011-0123-1.CrossRefGoogle Scholar
  62. Sitch S, Friedlingstein P and Gruber N et al. 2013 Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades; Biogeosci. 11 20113–20177,  https://doi.org/10.5194/bgd-10-20113-2013.CrossRefGoogle Scholar
  63. Sitch S et al. 2015 Recent trends and drivers of regional sources and sinks of carbon dioxide; Biogeosciences 12 653–679,  https://doi.org/10.5194/bg-12-653-2015.CrossRefGoogle Scholar
  64. Sokolov A P et al. 2008 Consequences of considering carbon–nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle; J. Clim. 21 3776–3796,  https://doi.org/10.1175/2008JCLI2038.1.CrossRefGoogle Scholar
  65. Tang X et al. 2014 How is water-use efficiency of terrestrial ecosystems distributed and changing on earth? Nat. Sci. Rep. 4 7483,  https://doi.org/10.1038/srep07483.CrossRefGoogle Scholar
  66. Tawde Sayli A and Singh C 2014 Investigation of orographic features influencing spatial distribution of rainfall over the Western Ghats of India using satellite data; Int. J. Climatol. 35(9) 2280–2293,  https://doi.org/10.1002/joc4146.CrossRefGoogle Scholar
  67. Thokchom A and Yadava P S 2016 Carbon dynamics in an Imperata grassland in Northeast India; Trop. Grasslands 4 19–28.  https://doi.org/10.17138/TGFT(4)19-28.
  68. Thompson R L and Patra P K et al. 2016 Top-down assessment of the Asian carbon budget since the mid-1990s; Nat. Commun. 7 10724,  https://doi.org/10.1038/ncomms10724.CrossRefGoogle Scholar
  69. Turner D P and Ritts W D et al. 2006 Evaluation of MODIS NPP and GPP products across multiple biomes; Remote Sens. Environ. 102 282–292.CrossRefGoogle Scholar
  70. Wolter K and Timlin M S 1993 Monitoring ENSO in COADS with a seasonally adjusted principal component index; In: Proc. 17th climate diagnostics workshop norman OK NOAA/NMC/CAC NSSL, Oklahoma Clim Survey, CIMMS and the School of Meteorology, University of Oklahoma, pp. 52–57.Google Scholar
  71. Wolter K and Timlin M S 1998 Measuring the strength of ENSO events – How does 1997/98 rank? Weather 53 315–324.CrossRefGoogle Scholar
  72. Xia L, Wang F, Mu X, Jin K, Sun W, Gao P and Zhao G 2015 Water use efficiency of net primary production in global terrestrial ecosystems; J. Earth Syst. Sci. 124(5) 921–931.CrossRefGoogle Scholar
  73. Xiao X, Mellilo J M, Kicklighter D W, McGuire A D, Prinn R G, Wang C, Stone P H and Sokolov A P 1997 Transient climate change and net ecosystem production of the terrestrial biosphere; MIT Joint Program on the Science and Policy of Global Change (No. 2), pp. 1–19.Google Scholar
  74. Zaehle S and Dalmonech D 2011 Carbon–nitrogen interactions on land at global scales: Current understanding in modelling climate biosphere feedbacks; Curr. Opin. Environ. Sustain. 3 311–320,  https://doi.org/10.1016/j.cosust.2011.08.008.CrossRefGoogle Scholar
  75. Zhang Z, Xue Y, MacDonald G, Cox P M and Collatz G J 2015 Investigation of North American vegetation variability under recent climate: A study using the SSiB4/TRIFFID biophysical/dynamic vegetation model; J. Geophys. Res. Atmos. 120 1300–1321,  https://doi.org/10.1002/2014JD021963.CrossRefGoogle Scholar
  76. Zhao M S, Heinsch F A, Nemani R R and Running S W 2005 Improvements of the MODIS terrestrial gross and net primary production global data set; Remote Sens, Environ. 95 164–176.CrossRefGoogle Scholar
  77. Zhu H et al. 2016 Evaluation of MODIS gross primary production across multiple biomes in China using eddy covariance flux data; Remote Sens.  https://doi.org/10.3390/rs8050395.

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Ananya S Rao
    • 1
    Email author
  • Govindasamy Bala
    • 1
  • N H Ravindranath
    • 2
  • Rama Nemani
    • 3
  1. 1.Centre for Atmospheric and Oceanic SciencesIndian Institute of ScienceBangaloreIndia
  2. 2.Centre for Sustainable TechnologiesIndian Institute of ScienceBangaloreIndia
  3. 3.NASA Ames Research CenterMountain ViewUSA

Personalised recommendations