Advertisement

Co-seismic grace gravity-based 11-layered 3-D thrust fault model for the Sumatra earthquake 2004

  • Rambhatla G SastryEmail author
  • Mahendra Kumar Sonker
Article
  • 13 Downloads

Abstract

Our co-seismic Gravity Recovery and Climate Experiment gravity data (level 2 ‘RL_05’ data product ‘GX-OG-_2-GSM) for the Sumatra earthquake 2004 is obtained by differencing monthly gravity field average for November 2004 from that of January 2005 and band-pass filtering (\(17{-}30^{\circ }\) and orders) in the spectral domain. Here, we propose a 11-layered three-dimensional (3-D) thrust fault gravity model based on different co-seismic rupture models in the literature. It honours co-seismic deformation of the ocean surface, ocean bottom and subsurface earth medium, different earthquake parameters and hypocentre information (\({\sim }35\) km below mean sea level). Our forward gravity response matches well with the observed gravity (RMS error of \(0.06257\,\upmu \hbox {gal}\) (6.26%)) data and our model allowed an independent computation of rupture length, instantaneous velocity, average seismic moment and momentum, which are, respectively, 1560 km, 2.9 km/s, \(4.53\times 10^{22 }\,\hbox {N}\,\hbox {m}\) and \( 9.7\times 10^{17}\,\hbox {kg}\,\hbox {m/s}\). These parameters fairly agree with those in the literature. The computed momentum indeed corresponds to an area pulse (\(9.7\times 10^{17}\,\hbox {kg}\,\hbox {m/s}\)) at ocean bottom that led to a tsunami generation. Thus, the proposed multi-layered 3-D gravity model in traditional fashion fully accounts for co-seismic gravity signal of the Sumatra earthquake 2004.

Keywords

GRACE satellite gravity spherical harmonics 3-D thrust fault model co-seismic gravity anomaly 

Notes

Acknowledgements

We gratefully acknowledged the help received from Mr Aruj Pant, a post-graduate student under the first author in isolation of satellite gravity signal of Sumatra earthquake 2004 and Dr Anand Gokula for gravity forward modelling software of right vertical pyramid model. Mr Sonker is thankful to the Ministry of Human Resources Development (MHRD), Government of India, for financial support.

References

  1. Ammon C J, Thio J C, Robinson D, Hjorleifsdottir N S, Kanamori V, Lay H, Das T, Helmberger S S, Ichinose D, Polet G and Wald J 2005 Rupture process of the 2004 Sumatra–Andaman earthquake; Science 308 1133–1139.Google Scholar
  2. Araki E, Shinohara M, Obana K, Yamada T, Kaneda K, Kanazawa T and Suyehiro K 2006 Aftershock distribution of the 26 December 2004 Sumatra–Andaman earthquake from ocean bottom seismographic observation; Earth Planets Space 58 113–119.Google Scholar
  3. Banerjee P, Pollitz F F and Bürgmann R 2005 The size and duration of the Sumatra–Andaman earthquake from far-field static offsets; Science 308 1769–1772.Google Scholar
  4. Barckhausen U 2006 The segmentation of the subduction zone offshore Sumatra: Relations between upper and lower plate; AGU 87(52).Google Scholar
  5. Bettadpur S 2007 Product specification document Rev 4.5; GRACE, pp. 327–720.Google Scholar
  6. Briggs R W, Sieh K, Meltzner A J, Natawidjaja D, Galetzka J and Suwargadi B 2006 Deformation and slip along the Sunda megathrust in the great 2005 Nias–Simeulue earthquake; Science 311 1897–1901.Google Scholar
  7. Broerse D B T, Vermeersen L L A, Riva R E M and Vander W 2011 Ocean contribution to co-seismic crustal deformation and geoid anomalies: Application to the 2004 December 26 Sumatran–Andaman earthquake; Earth Planet. Sci. Lett. 305 341–349.Google Scholar
  8. Broerse T, Riccardo R and Bert V 2014 Ocean contribution to seismic gravity changes: The sea level equation for seismic perturbations revisited; Geophys. J. Int. 199 1094–1109.Google Scholar
  9. Cambiotti G and Sabadini R 2013 Gravitational seismology retrieving centroid–moment tensor solution of the 2011 tohoku earthquake; J. Geophys. Res.: Solid Earth 118(1) 183–194.Google Scholar
  10. Cazenave A and Chen J 2010 Time-variable gravity from space and present-day mass redistribution in the earth system, earth planet; Sci. Lett. 2010 7–35.Google Scholar
  11. Chen J L, Wilson C R, Tapley B D and Grand S 2007 GRACE detects coseismic and postseismic deformation from the Sumatra–Andaman earthquake; Geophys. Res. Lett. 34 L13302.Google Scholar
  12. Chlieh M, Avouac J P, Hjorleifsdottir V, Song T R A, Sieh J C, Sladen K, Hebert A, Prawirodirdjo H, Bock L and Galetzka J 2007 Coseismic slip and afterslip of the Great Mw 9.15 Sumatra–Andaman earthquake of 2004; Bull. Seismol. Soc. Am. 97 152–173.Google Scholar
  13. Delescluse M and Chamot-Rooke N 2007 Instantaneous deformation and kinematics of the India–Australia plate; Geophys. J. Int. 168 818–842.Google Scholar
  14. de Linage C, Rivera L, Hinderer J, Boy J P, Rogister Y, Lambotte S and Biancale R 2009 Separation of coseismic and postseismic gravity changes for the 2004 Sumatra–Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation; Geophys. J. Int176 695–714.Google Scholar
  15. De Viron O, Panet I, Mikhailov V, Van Camp M and Diament M 2008 Retrieving earthquake signature in grace gravity solution; Geophys. J. Int. 174 14–20.Google Scholar
  16. Engdahl E R, Villaseñor A, De Shon H R and Thurber C H 2007 Teleseismic relocation and assessment of seismicity (1918–2005) in the region of the 2004 Mw 9.0 Sumatra–Andaman and 2005 Mw 8.6 Nias Island great earthquakes; Bull. Seismol. Soc. Am. 97 43–61.Google Scholar
  17. Fujii Y and Satake K 2007 Tsunami source of the 2004 Sumatra–Andaman earthquake inferred from tide gauge and satellite data; Bull. Seismol. Soc. Am97 S192–207.Google Scholar
  18. Geist E L, Vasily V T, Diego A, Pollitz F F and Bilek S L 2007 Implications of the 26 December 2004 Sumatra–Andaman earthquake; Bull. Seismol. Soc. Am. 97(1A) S249–S270.Google Scholar
  19. Gilbert F and Backus G 1968 Elastic gravitational vibrations of a radially stratified sphere; In: Dynamics of Structured Solids (ed). Harmann G, ASME, pp. 82–95.Google Scholar
  20. Gokula A P and Sastry R G 2015a Gravitational attraction of a vertical pyramid model of flat top and bottom with depth-wise linear density variation; Curr. Sci. (00113891) 109(10).Google Scholar
  21. Gokula A and Sastry R G 2015b Gravitational attraction of a vertical pyramid model of flat top & bottom with depth-wise parabolic density variation. J. Earth Syst. Sci. 124(8) 1735–1744.Google Scholar
  22. Han S C, Shum C K, Bevis M and Kuo C Y 2006 Crustal dilatation 103 observed by GRACE after the 2004 Sumatra–Andaman earthquake; Science 313 658–661.Google Scholar
  23. Han S C, Riva R, Sauber J and Okal E 2013 Source parameter inversion for recent great earthquakes from a decade-long observation of global gravity fields; J. Geophys. Res. 118 1240–1267.Google Scholar
  24. Harms J, Ampuero J P, Barsuglia M, Chassande-Mottin E, Montagner J P, Somala S N and Whiting B F 2015 Transient gravity perturbations induced by earthquake rupture; Geophys. J. Int. 201 1416–1425.Google Scholar
  25. Hayes T J, Tiampo K F and Fernandez J 2006 Gravity changes from a stress evolution earthquake simulation of California; J. Geophys. Res. 111 B09408.Google Scholar
  26. Heiskanen W A and Moritz H 1967 Physical Geodesy; W.H. Freeman, San Francisco.Google Scholar
  27. Heki K and Matsuo K 2010 Coseismic gravity changes of the 2010 earthquake in central Chile from satellite gravimetry; Geophys. Res. Lett. 37 L24306.Google Scholar
  28. Katsumata K 2015 A long-term seismic quiescence before the 2004 Sumatra (Mw 9.1) earthquake; J. Bull. Seismol. Soc. Am. 105 1.Google Scholar
  29. Konca A O, Avouac J P, Sladen A, Meltzner A J, Sieh K, Fang P, Galetzka J, Genrich J, Chlieh M, Natawidgaga D H, Bock Y, Fielding E J and Helmberger D V 2008 Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence; Nature 456 631–635.Google Scholar
  30. Lambeck K 1990 Aristoteles – An ESA mission to study the earth’s gravity field; ESA J. 14 1–21.Google Scholar
  31. Lay T, Kanamori H, Ammon C J, Nettles M, Ward S N, Aster R C, Beck S L, Bilek S L, Brudzinski M R, Butler R, DeShon H R, Ekström G, Satake K and Sipkin S 2005 The great Sumatra–Andaman earthquake of 26 December 2004; Science 308 1127–1133.Google Scholar
  32. Liu P L F, Woo S B and Cho Y S 1998 Computer Programs for Tsunami Propagation and Inundation; Cornell University, Ithaca, NY, USA.Google Scholar
  33. Lowrie W 2007 Fundamentals of Geophysics; 2nd edn, Swiss Federal Institute of Technology, Zürich.Google Scholar
  34. Okubo S 1992 Gravity and potential changes due to shear and tensile faults in a half-space; J. Geophys. Res. 97 7137–7144.Google Scholar
  35. Panet I, Mikhailov V, Diament M, Pollitz F, King G, De Viron O, Holschneider M, Biancale R and Lemoine J M 2007 Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity; Geophys. J. Int. 171 177–190.Google Scholar
  36. Pietrzak J, Socquet A, Ham D, Simons W, Vigny C, Labeur R J, Schrama E, Stelling G and Vatvani D 2007 Defining the source region of the Indian Ocean Tsunami from GPS, altimeters, tide gauges and tsunami models; Earth Planet. Sci. Lett261 49–64.Google Scholar
  37. Plafker G 1972 Alaskan earthquake of 1964 and Chilean earthquake of 1960: Implications for arc tectonics; J. Geophys. Res. 77(5) 901–925.Google Scholar
  38. Poisson B, Oliveros C and Pedreros R 2011 Is there a best source model of the Sumatra 204 earthquake for simulating the consecutive tsunami; Geophys. J. Int. 185 1365–1378.Google Scholar
  39. Pollitz F F 1997 Gravity anomaly from faulting on a layered spherical earth with application to central Japan; Phys. Earth Planet. Inter. 99 259–271.Google Scholar
  40. Pollitz F F, Bürgmann R and Banerjee P 2011 Geodetic slip model of the 2011 M9.0 Tohoku earthquake; Geophys. Res. Lett. 38 L00G08.Google Scholar
  41. Rhie J, Dreger D, Burgmann R and Romanowicz B 2007 Slip of the 2004 Sumatra–Andaman earthquake from joint inversion of long-period global seismic wave-forms and GPS static offsets; Bull. Seismol. Soc. Am. 97(1A) S115–S127.Google Scholar
  42. Sastry R G and Sonker M K 2017 3-D GRACE gravity model for the 2011 Japan earthquake; J. Earth Syst. Sci. 126(1) 1–4.Google Scholar
  43. Schultz K W, Sachs M K, Heien E M, Rundle J B, Turcotte D L and Donnellan A 2016 Simulating gravity changes in topologically realistic driven earthquake fault systems: First results; Pure Appl. Geophys. 173(3) 827–838.Google Scholar
  44. Shearer P M and Bürgmann R 2010 Lessons learned from the 2004 Sumatra–Andaman megathrust rupture; Annu. Rev. Earth Planet. Sci. 38 103–131.Google Scholar
  45. Sheriff S D and Stickney M C 1984 Crustal structure of southwestern Montana and east-central Idaho: Results of a reversed seismic refraction line; Geophys. Res. Lett. 11(4) 299–302.Google Scholar
  46. Sibuet J C, Rangin C, Le Pichon X, Singh S, Cattaneo A, Graindorge D, Klingelhoefer F, Lin J Y, Malod J, Maury T, Sultan J L N, Umber M, Yamaguchi H and Sumatra aftershocks team 2007 26th December 2004 great Sumatra–Andaman earthquake: Co-seismic and post-seismic motions in northern Sumatra; Earth Planet. Sci. Lett. 263 88–103.Google Scholar
  47. Sieh K and Natawidjaja D H 2000 Neotectonics of the Sumatran fault; Indones. J. Geophys. Res. 105 28295–28326.Google Scholar
  48. Simons M, Minson S E, Sladen A, Ortega F, Jiang J, Owen S E, Meng L, Am-puero S W and Chu R 2011 The 2011 magnitude 9.0 Tohoku-oki earthquake: Mosaicking the megathrust from seconds to centuries; Science 332 1421–1425.Google Scholar
  49. Socquet A, Vigny C, Chamot-Rooke N, Simons W, Rangin C and Ambrosius B 2006 India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS; J. Geophys. Res. 111 B05406.Google Scholar
  50. Stein S and Okal E A 2005 Speed and size of the Sumatra earthquake; Nature 434 581–582.Google Scholar
  51. Stork A L, Verdon J P and Kendall J M 2014 The robustness of seismic moment and magnitudes estimated using spectral analysis; Geophys. Prospect. 62(4) 862–878.Google Scholar
  52. Subarya C, Chlieh M, Prawirodirdjo L, Avouac J P, Bock Y, Sieh K, Meltzner A J, Natawidjaja D H and McCaffrey R 2006 Plateboundary deformation associated with the great Sumatra–Andaman earthquake; Nature 440 46–51.Google Scholar
  53. Sun W and Okubo S 1993 Surface potential and gravity changes due to internal dislocations in a spherical earth – I, Theory for a point dislocation; Geophys. J. Int. 114 569–592.Google Scholar
  54. Sun W and Okubo S 1998 Surface potential and gravity changes due to internal dislocations in a spherical earth–II, Application to a finite fault; Geophys. J. Int. 132 79–88.Google Scholar
  55. Tanioka Y, Yudhicara, Kususose T, Kathiroli S, Nishimura Y, Iwasaki S I and Satake K 2006 Rupture process of the 2004 great Sumatra–Andaman earthquake estimated from tsunami waveforms; Earth Planets Space 58 203–209.Google Scholar
  56. Tapley B D, Bettadpur S, Ries J, Thompson P and Watkins M 2004 GRACE measurements of mass variability in the Earth system; Science 305 503–505.Google Scholar
  57. Tsai V C, Nettles M, Ekstrom G and Dziewonski A M 2005 Multiple CMT source analysis of the 2004 Sumatra earthquake; Geophys. Res. Lett32 L17304.Google Scholar
  58. Vallee M 2007 Rupture properties of the giant Sumatra earthquake imaged by empirical Green’s function analysis; Bull. Seismol. Soc. Am97 S103–S114.Google Scholar
  59. Vigny C, Simons W J F, Abu S, Bamphenyu R, Satirapod C, Choosakul N, Subarya C, Socquet A, Omar K, Abidin H Z and Ambrosius B A C 2005 Insight into the 2004 Sumatra–Andaman earthquake from GPS measurements in southeast Asia; Nature 436 201–206.Google Scholar
  60. Wang X and Liu P L F 2006 An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian ocean tsunami; J. Hydraul. Res. 44(2) 147–154.Google Scholar
  61. Wang L, Shum C K, Frederik S J, Tapley B and Dail C 2012a Coseismic and postseismic deformation of the 2011 Tohoku-Oki earthquake constrained by GRACE gravimetry; Geophys. Res. Lett. 39 L07301.Google Scholar
  62. Wang L, Shum C K and Jekeli C 2012b Gravitational gradient changes following the Summatra–Andaman earthquake inferred from GRACE; Geophys. J. Int. 191 1109–1118.Google Scholar
  63. Watts A B 2001 Isostasy and Flexure of the Lithosphere; Cambridge University Press, 458p.Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Earth SciencesIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations