Advertisement

Establishment of digital 3D map based on discrete elevation point data measured in the field

  • Aimin Li
  • Zhiwen HanEmail author
  • Caiyun Guo
  • Shuai Zhong
Article
  • 27 Downloads

Abstract

This study established a survey zone digital elevation model (DEM) using highly precise and regularly updated three-dimensional coordinates of the surface of barchan dunes using CASS9.0 software. Two contour plots were drawn, one for the entire survey zone drawn with a contour interval of 0.005 m and one for an individual sand dune drawn with a contour interval of 0.001 m. ArcMap10 was used to define the projection of the created contour lines in DWG format and export the data into shape files to enable the creation of a triangulated irregular network (TIN). Next, TIN data was converted into raster data to facilitate our analysis and data processing. We created the final TIN by using an additional smoothing processing on the desired area that had been clipped out. We added the TIN data to the ArcScene module to establish the final 3D numerical model of barchan dunes. This model extracts and analyzes the changes in the characteristic parameters of the barchan dune as its topography changes in real time so researchers can visualize dune migration and evolution. Their understanding is enhanced by comparing and superposing the various 3D dune models on different days.

Keywords

Barchan dune DEM TIN 3D simulation 

Notes

Acknowledgements

The author wants to express his appreciation for Rui Wang and Meng-Chen Chen, who was admitted to the University of Chinese Academy of Sciences in 2014. Both have participated in the surveying work of sand dune topography in the hinterlands of the Taklimakan Desert. This work was financially supported by the National Natural Science Foundation of China (41371025) and the National Science and Technology Support Program (2015BAC06B01-01).

References

  1. Abolkhair Y M S 1986 The statistical analysis of the sand grain size distribution of AI-Ubay-lah barchan dunes, northwestern Ar-Rub-Alkhali desert, Saudi Arabia; GeoJournal 13(2) 103–109.CrossRefGoogle Scholar
  2. Baddock M C, Livingstone I and Wiggs G F S 2007 The geomorphological significance of airflow patterns in transverse dune interdunes; Geomorphology 87 322–336.CrossRefGoogle Scholar
  3. Bo T L and Zheng X J 2011 The formation and evolution of aeolian dune fields under unidirectional wind; Geomorphology 134 408–416.CrossRefGoogle Scholar
  4. Chen S B 2005 Three-dimension visualization for texture in western slope of Songliao basin; J. Jilin Univ. 35 47–50.Google Scholar
  5. Cong D G, Pang H L, Fang M, Chen X J, Liu C and Tian Y 2014 Dunes distribution study on north of Tengery desert based on remote sensing and DEM; China Min. Mag. 23 153–159.Google Scholar
  6. Dinieg S, Glasner K and Byrne S 2010 Long-time evolution of models of aeolian sand dune fields: In fluence of dune formation and collision; Geomorphology 121 55–68.CrossRefGoogle Scholar
  7. Dong Z B, Qian G Q, Lu P, Luo W and Wang H 2009 Turbulence fields in the lee of two-dimensional transverse dunes simulated in a wind tunnel; Earth. Surf. Proc. Land. 34 204–216.CrossRefGoogle Scholar
  8. Du H Q, Han Z W, Deng X H, Zhang Y and Sun J H 2011 A sand flux model for the surface of barchan dunes using GIS-based spatial analysis; J. Desert. Res. 31(4) 815–823.Google Scholar
  9. Durán Q, Schwämmle V, Lind P G and Herrmann H J 2009 The dune size distribution and scaling relations of barchan dune fields; Granul. Matter. 11 7–11.CrossRefGoogle Scholar
  10. Elbelrhiti H, Claudin P and Andreotti B 2005 Field evidence for surface-wave-induced instability of sand dunes; Nature 437 720–723.CrossRefGoogle Scholar
  11. Endo N, Taniguchi K and Katsuki A 2004 Observation of the whole process of interaction between barchans by flume experiments; Geophys. Res. Lett. 31(12) 5321–5329.CrossRefGoogle Scholar
  12. Faria R, Ferreira A D, Sismeiro J L, Mendes J C F and Sousa A C M 2011 Wind tunnel and computational study of the stoss slope effect on the Aeolian erosion of transverse sand dunes; Aeolian Res. 3 303–314.CrossRefGoogle Scholar
  13. Frank A and Kocurek G 1996 Airflow up the stoss slope of sand dune: Limitation of current understanding; Geomorphology 17 47–56.CrossRefGoogle Scholar
  14. Gómez-Ortiz D, Martín-Crespo T, Rodríguez I, Sánchez M J and Montoya I 2009 The internal structure of modern barchan dunes of the Ebro River Delta (Spain) from ground penetrating radar; J. Appl. Geophys. 68 159–170.CrossRefGoogle Scholar
  15. Han Z W, Du H Q, Gou Q Q and Sun J H 2012 The piecewise fitting of sand flux vertical distribution of wind–sand flow within 100 cm height above the barchan dune surface; Sci. Geogr. Sin. 32(7) 892–897.Google Scholar
  16. Hersen P 2004 On the crescentic shape of barchan dunes; Eur. Phys. J. B 37 507–514.CrossRefGoogle Scholar
  17. Huang D Q, Dong Y X, Ha S and Ma J 2007 The Application of multi-station RTKGPS in the measurement of coastal dune; Acta. Scientiarum. Nat. U. Sunyatseni 46(4) 121–124.Google Scholar
  18. Hugenholtz C H and Wolfe S A 2005 Recent stabilization of active sand dunes on the Canadian prairie and relation to recent climate variations; Geomorphology 68 131–147.CrossRefGoogle Scholar
  19. Käln H W and Adelaide C R T 1988 Formation and age of desert dunes in the lake eyre depocentres in central Australia; Geol. Rundsch. 77(3) 815–834.CrossRefGoogle Scholar
  20. Katagiri J, Matsushima T and Yamada Y 2010 Simple shear simulation of 3D irregularly-shaped particles by image-based DEM; Granul. Matter. 12 491–497.CrossRefGoogle Scholar
  21. Katsuki A, Nishimori H, Endo N and Taniguchi K 2004 Collision dynamics of two barchan dunes simulated by a simple model; J. Phys. Soc. Jan. 74(2) 538–541.CrossRefGoogle Scholar
  22. Kocurek G and Ewing R C 2005 Aeolian dune field self-organization–implications for the formation of simple versus complex dune-field patterns; Geomorphology 72 94–105.CrossRefGoogle Scholar
  23. Li H P and Chen G T 1999 Retrograde evolution of barchan on interdune corridor of complex ridges in central Taklimakan desert; J. Desert. Res. 19(2) 134–138.Google Scholar
  24. Ling Y Q, Wu Z, Liu S Z and Li C Z 1998 Simulating study on barchan dune; Chinese Geogr. Sci. 8(2) 168–175.CrossRefGoogle Scholar
  25. Li S, Liu X W, Li H C, Zheng Y H and Wei X H 2007 A wind tunnel simulation of the dynamic processes involved in sand dune formation on the western coast of Hainan island; J. Geogr. Sci. 17(4) 453–468.CrossRefGoogle Scholar
  26. Li T W 2010 Modern surveying; Science Press, Beijing.Google Scholar
  27. Mckee E D 1966 Structures of dunes at White Sands National Monument, New Mexico; Sedimentology 7(1) 1–69.CrossRefGoogle Scholar
  28. Moosavi V, Shamsi S R F, Moradi H and Shirmohammadi B 2014 Application of Taguchi method to satellite image fusion for object-oriented mapping of barchan dunes; Geosci. J. 18(1) 45–49.CrossRefGoogle Scholar
  29. Mou N X, Liu W B, Wang H Y and Dai H L 2012 The tutorial of ArcGIS10 geographic information system; Surveying and Mapping Publishing House, Beijing.Google Scholar
  30. Palmer J A, Mejia-Alvarez R, Best J L and Christensen K T 2012 Particle-image velocimetry measurements of flow over interacting barchan dunes; Exp. Fluids 52 809–829.CrossRefGoogle Scholar
  31. Parsons D R, Wiggs G F S, Walker I J, Ferguson R I and Garvey B G 2004a Numerical modeling of airflow over an idealized transverse dune; Environ. Modell. Softw. 19 153–162.CrossRefGoogle Scholar
  32. Parsons D R, Walker I J and Wiggs G F S 2004b Numerical modeling of flow structures over idealized transverse aeolian dunes of varying geometry; Geomorphology 59 149–164.CrossRefGoogle Scholar
  33. Qi R, Qi M and Li K 2014 The research on the method of 3D terrain generation based on the digital terrain map; Electron. Des. Eng. 22(7) 191–193.Google Scholar
  34. Ruiz-arias J A, Tovar-pescador J, Pozo-vazquez D and Alsamamra H 2009 A comparative analysis of DEM-based models to estimate the solar radiation in mountainous terrain; Int. J. Geogr. Inf. Sci. 23(8) 1049–1076.CrossRefGoogle Scholar
  35. Samani A N, Khosravi H, Mesbahzadeh T, Azarakhshi M and Rahdari M R 2016 Determination of sand dune characteristics through geomorphometry and wind data analysis in central Iran (Kashan Erg); Arab. J. Geosci. 9 716.CrossRefGoogle Scholar
  36. Samavati F and Runions A 2016 Interactive 3D content modeling for digital earth; Vis. Comput. 32 1293–1309.CrossRefGoogle Scholar
  37. Schwämmle V and Herrmann H J 2005 A model of Barchan dunes including lateral shear stress; Eur. Phys. J. E 16 57–65.CrossRefGoogle Scholar
  38. Sibson R 1981 A brief description of natural neighbour interpolation. In: Interpreting Multivariate Data 21 21–36Google Scholar
  39. Stam J M T 1997 On the modeling of two-dimensional aeolian dunes; Sedimentology 44 127–141.CrossRefGoogle Scholar
  40. Tsoar H and Parteli E J R 2016 Bidirectional winds, barchan dune asymmetry and formation of Seif dunes from barchans: A discussion; Environ. Earth. Sci. 75(18) 1237.CrossRefGoogle Scholar
  41. Tang G A, Li F Y and Liu X J 2010 Digital elevation mode course; Science Press, Beijing.Google Scholar
  42. Tang G A and Yang X 2012 ArcGIS geographic information system spatial analysis experiment course; Science Press, Beijing.Google Scholar
  43. Walker I J and Nickling W G 2003 Simulation and measurement of surface shear stress over isolated and closely spaced transverse dunes in a wind tunnel; Earth. Surf. Proc. Land. 28 1111–1124.CrossRefGoogle Scholar
  44. Wang C, Li H, Yang J S and Yang C C 2015 Study on generation technique of high quality contour lines based on grid DEM; Acta. Geol. Sinica. 17(2) 160–165.Google Scholar
  45. Weng W S, Hunt J C R, Carruthers D J, Warren A, Wiggs G F S, Livingstone I and Castro I 1991 Air flow and sand transport over sand-dunes; Acta. Mech. Suppl. 2 1–22.CrossRefGoogle Scholar
  46. Werner B T 1995 Eolian dunes: Computer simulations and attractor interpretation; Geology 23 1107–1110.CrossRefGoogle Scholar
  47. Wiggs G F S, Livingstone I and Warren A 1996 The role of streamline curvature in sand dune dynamics: Evidence from field and wind tunnel measurements; Geomorphology 17 29–46.CrossRefGoogle Scholar
  48. Wu Z 1987 Aeolian geomorphology; Science Press, Beijing.Google Scholar
  49. Xia J S and Dong P L 2016 A GIS add-in for automated measurement of sand dune migration using LiDAR-derived multitemporal and high-resolution digital elevation models; Geosphere 12(4) 1316–1322.CrossRefGoogle Scholar
  50. Xiang J S, Munjiza A, Latham J and Guises R 2009 On the validation of DEM and FEM/DEM models in 2D and 3D; Eng. Comput. 26(6)673–687.CrossRefGoogle Scholar
  51. Yang N, Su L L, Wan L, Yang J, Chen S Y and Hu W L 2016 A method for building 3D models of barchan dunes; Geomorphology 253 181–188.CrossRefGoogle Scholar
  52. Yan L and Yang L H 2009 Based on Delaunay triangulation DEM of terrain model; Comput. Inf. Sci. 2(2) 137.Google Scholar
  53. Zhang C L, Hao Q Z, Zou X Y and Yan P 1999 Response of morphology and deposits to surface flow on windward slope of barchan dune; J. Desert. Res. 19(4) 359–363.Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Aimin Li
    • 1
    • 2
    • 3
  • Zhiwen Han
    • 1
    Email author
  • Caiyun Guo
    • 3
    • 4
  • Shuai Zhong
    • 1
    • 3
  1. 1.Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina
  2. 2.College of Urban ConstructionHeze UniversityHezeChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations