Arctic summer sea-ice seasonal simulation with a coupled model: Evaluation of mean features and biases

  • P P SaheedEmail author
  • Ashis K Mitra
  • Imranali M Momin
  • E N Rajagopal
  • Helene T Hewitt
  • Ann B Keen
  • Sean F Milton


Current state of the art weather/climate models are representation of the fully coupled aspects of the components of the earth system. Sea-ice is one of the most important components of these models. Simulation of sea-ice in these models is a challenging problem. In this study, evaluation of the hind-cast data of 14 boreal summer seasons with global coupled model HadGEM3 in its seasonal set-up has been performed over the Arctic region from \(9\mathrm{th}\) May start dates. Along with the biases of the sea-ice variables, related atmosphere and oceanic variables have also been examined. The model evaluation is focused on seasonal mean of sea-ice concentration, sea-ice thickness, ocean surface current, SST, ice-drift velocity and sea-ice extent. To diagnose the sea-ice biases, atmospheric variables like, 10 m wind, 2 m air temperature, sea-level pressure and ocean sub-surface temperatures were also examined. The sea-ice variables were compared with GIOMAS dataset. The atmospheric and the oceanic variables were compared with the ERA Interim and the ECMWF Ocean re-analysis (ORAP5) datasets, respectively. The model could simulate the sea-ice concentration and thickness patterns reasonably well in the Arctic Circle. However, both sea-ice concentration and thickness in the model are underestimated compared to observations. A positive (warm) bias is seen both in 2 m air temperature and SST, which are consistent with the negative sea-ice bias. Biases in ocean current and related ice drift are not related to biases in the atmospheric winds. The magnitude of the oceanic subsurface warm biases is seen to be gradually decreasing with depth, but consistent with sea-ice biases. These analyses indicate a possibility of deeper warm subsurface water in the western Arctic Ocean sector (Pacific and Atlantic exchanges) affecting the negative biases in the sea-ice at the surface. The model is able to simulate reasonably well the summer sea-ice melting process and its inter-annual variability, and has useable skill for application purpose.


Arctic sea-ice model simulation coupled model sea-ice verification 



ORAP5 ocean re-analysis dataset was taken from ERA Interim re-analysis was taken from ECMWF. HadISST data was taken from Hadley center, UK. GIOMAS observed sea-ice datasets were taken from Polar Science Centre, University of Washington, USA. The NEMO ocean model is part of NEMO consortium. CICE model was taken from Los Alamos National Laboratory sea-ice model repository. The NCMRWF component of the work is done under MoES Belmont Forum project BITMAP. We are thankful to two anonymous reviewers for their useful comments and suggestions.

Supplementary material

12040_2018_1043_MOESM1_ESM.pdf (146 kb)
Supplementary material 1 (pdf 145 KB)


  1. Arribas A, Glover M, Maidens A, Peterson K, Gordon M, MacLachlan C, Graham R, Fereday D, Camp J, Scaife A A, Xavier P, McLean P, Colman A and Cusack S 2011 The GloSea4 ensemble prediction system for seasonal forecasting; Mon. Wea. Rev. 139 1891–1910, Scholar
  2. Balmaseda M A, Mogensen K and Weaver A T 2013 Evaluation of the ECMWF ocean reanalysis system ORAS4; Quart. J. Roy. Meteorol. Soc. 139 1132–1161, Scholar
  3. Bitz C M and Lipscomb W H 1999 An energy-conserving thermodynamic model of sea ice; J. Geophys. Res. Ocean 104 15669–15677, Scholar
  4. Cassano E N, Cassano J J, Higgins M E and Serreze M C 2014 Atmospheric impacts of an Arctic sea ice minimum as seen in the community atmosphere model; Int. J. Climatol. 34 766–779, Scholar
  5. Cohen J, Screen J A, Furtado J C, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J and Jones J 2014 Mid-latitude weather; Nat. Publ. Gr. 7 627–637, Scholar
  6. Comiso J C 2006 Abrupt decline in the Arctic winter sea ice cover; Geophys. Res. Lett. 33 1–5, Scholar
  7. Day J J, Tietsche S, Collins M, Goessling H F, Guemas V, Guillory A, Hurlin W J, Ishii M, Keeley S P E, Matei D, Msadek R, Sigmond M, Tatebe H and Hawkins E 2016 The Arctic predictability and prediction on seasonal-to-interannual TimEscales (APPOSITE) dataset version 1; Geosci. Model Dev. 9 2255–2270, Scholar
  8. Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Holm E V, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thepaut J N and Vitart F 2011 The ERA-Interim reanalysis: Configuration and performance of the data assimilation system; Quart. J. Roy. Meteorol. Soc. 137 553–597, Scholar
  9. Deser C and Teng H 2008 Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979–2007; Geophys. Res. Lett. 35 1–5, Scholar
  10. Dukhovskoy, Dmitry S, Ubnoske J, Wrigglesworth E B, Hannah R and Hiester A P 2015 Skillmetrics for evaluation and comparison of sea icemodels; J. Geophys. Res. Ocean 132 1–17, Scholar
  11. Feltham D 2015 Arctic sea ice reduction: The evidence, models and impacts; Phil. Trans. Roy. Soc. A 373 1–3, Scholar
  12. Gordon C, Cooper C, Senior C A, Banks H, Gregory J M, Johns T C, Mitchell J F B and Wood R A 2000 The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley centre coupled model without flux adjustments; Clim. Dyn. 16 147–168, Scholar
  13. Henderson G R, Barrett B S and Lafleur M D 2014 Arctic sea ice and the Madden–Julian Oscillation (MJO); Clim. Dyn. 43 2185–2196, Scholar
  14. Hewitt H T, Copsey D, Culverwell I D, Harris C M, Hill R S R, Keen A B, McLaren A J and Hunke E C 2011 Design and implementation of the infrastructure of HadGEM3: The next-generation Met Office climate modelling system; Geosci. Model Dev. 4 223–253,
  15. Hewitt H T, Ridley J K, Keen A B, West A E, Peterson K A, Rae J G L, Milton S M and Bacon S 2015 A seamless approach to understanding and predicting Arctic sea ice in Met Office Modelling systems; Phil. Trans. Roy. Soc. A 373 20140161, Scholar
  16. Hunke E C and Lipscomb W H 2010 CICE: The Los Alamos sea ice model documentation and software user’s manual version 4.1 LA–CC–06–012; Los Alamos Natl. Lab., 1–76.Google Scholar
  17. Johns T C, Durman C F, Banks H T, Roberts M J, McLaren A J, Ridley J K, Senior C A, Williams K D, Jones A, Rickard G J, Cusack S, Ingram W J, Crucifix M, Sexton D M H, Joshi M M, Dong B W, Spencer H, Hill R S R, Gregory J M, Keen A B, Pardaens A K, Lowe J A, Bodas-Salcedo A, Stark S and Searl Y 2006 The new Hadley centre climate model (HadGEM1): Evaluation of coupled simulations; J. Clim. 19 1327–1353, Scholar
  18. Keen A B, Hewitt H T and Ridley J K 2013 A case study of a modelled episode of low Arctic sea ice; Clim. Dyn. 41(5–6) 1229–1244, Scholar
  19. Krishnamurti T N, Krishnamurti R, Das S, Kumar V, Jayakumar A and Simon A 2014 A pathway connecting the monsoonal heating to the rapid Arctic ice melt; J. Atmos. Sci. 72 5–34, Scholar
  20. Lipscomb W H and Hunke E C 2004 Modeling sea ice transport using incremental remapping; Mon. Wea. Rev. 132 1341–1354, Scholar
  21. Liu J, Curry J A and Hu Y 2004 Recent Arctic sea ice variability: Connections to the Arctic oscillation and the ENSO; Geophys. Res. Lett. 31 2–5, Scholar
  22. Maclachlan C, Arribas A, Peterson K A, Maidens A, Fereday D, Scaife A A, Gordon M, Vellinga M, Williams A, Comer R E, Camp J, Xavier P and Madec G 2015 Global seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system; Quart. J. Roy. Meteorol. Soc. 141 1072–1084, Scholar
  23. McLaren A J, Banks H T, Durman C F, Gregory J M, Johns T C, Keen A B, Ridley J K, Roberts M J, Lipscomb W, Connolley W and Laxon S 2006 Evaluation of the sea ice simulation in a new atmosphere-ocean coupled climate model (HadGEM1); J. Geophys. Res. Oceans 111 C12014, Scholar
  24. Madec G and the NEMO team 2008 NEMO ocean engine. Note du Pôle de modélisation’, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288-161.Google Scholar
  25. Marshall J, Scott J and Proshutinsky A 2017 Climate response functions for the Arctic Ocean: A proposed coordinated modeling experiment; Geosci. Model Dev. Discuss. 1–25,
  26. Mitra A K, Rajagopal E N, Iyengar G R, Mahapatra D K, Momin I M, Gera A, Sharma K, George J P, Ashrit R, Dasgupta M, Mohandas S, Prasad V S, Basu S, Arribas A, Milton S F, Martin G M, Barker D and Martin M 2013 Prediction of monsoon using a seamless coupled modelling system; Curr. Sci. 104 1369–1379.Google Scholar
  27. Parkinson C L and Cavalieri D J 2012 Antarctic sea ice variability and trends 1979–2010; Cryosphere 6 871–880, Scholar
  28. Parkinson C L and DiGirolamo N E 2016 New visualizations highlight new information on the contrasting Arctic and Antarctic sea-ice trends since the late 1970’s; Remote Sens. Environ. 183 198–204, Scholar
  29. Pemberton P, Löptien U, Hordoir R, Höglund A, Schimanke S and Axell L 2017 Ocean-sea-ice model setup for the North sea and Baltic sea; Geosci. Model Dev. 10 3105–3123.CrossRefGoogle Scholar
  30. Peterson K A, Arribas A, Hewitt H T, Keen A B, Lea D J and McLaren A J 2015 Assessing the forecast skill of Arctic sea ice extent in the GloSea4 seasonal prediction system; Clim. Dyn. 44(1–2) 147–162, Scholar
  31. Petrie R E, Shaffrey L C and Sutton R T 2015 Atmospheric response in summer linked to recent Arctic sea ice loss; Quart. J. Roy. Meteorol. Soc. 141 2070–2076, Scholar
  32. Rae J G L, Hewitt H T, Keen A B, Ridley J K, Edwards J M and Harris C M 2014 A sensitivity study of the sea ice simulation in the global coupled climate model, HadGEM3; Ocean Model 74 60–76, Scholar
  33. Rae J G L, Hewitt H T, Keen A B, Ridley J K, West A E, Harris C M, Hunke E C and Walters D N 2015 Development of the global sea ice 6.0 CICE configuration for the met office global coupled model; Geosci. Model Dev. 8 2221–2230,
  34. Rayner N A, Parker D E, Horton E B, Folland C K, Alexander L V, Rowell D P, Kent E C and Kaplan A 2003 Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century; J. Geophys. Res. 108 4407, Scholar
  35. Reynolds R W, Smith T M, Liu C, Chelton D B, Casey K S and Schlax M G 2007 Daily high-resolution-blended analyses for sea surface temperature; J. Clim. 20 5473–5496, Scholar
  36. Rinke A, Dethloff K, Dorn W, Handorf D and Moore J C 2013 Simulated Arctic atmospheric feedbacks associated with late summer sea ice anomalies; J. Geophys. Res. Atmos. 118 7698–7714, Scholar
  37. Saheed P P, Mitra A K, Momin I M, Mahapatra D and Rajagopal E N 2016 Satellite information of sea ice for model validation; In: Proceedings of Land Surface and Cryosphere Remote Sensing, 98772G,
  38. Screen J A and Francis J A 2016 Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability; Nat. Clim. Chang. 6 856–860, Scholar
  39. Semtner A J 1976 A model for the thermodynamic growth of sea ice in numerical investigations of climate; J. Phys. Oceanogr.,
  40. Serreze M C, Marika M and Holland J S 2007 Perspectives on the Arctic’s shrinking sea-ice cover; Science 315 1533–1537.CrossRefGoogle Scholar
  41. Serreze M C and Stroeve J 2015 Arctic sea ice trends, variability and implications for seasonal ice forecasting; Phil. Trans. Roy. Soc. A 373 20140159, Scholar
  42. Thorndike A S, Rothrock D A, Maykut G A and Colony R 1975 The thickness distribution of sea-ice; J. Geophys. Res. 80(33) 4501–4513.CrossRefGoogle Scholar
  43. Tietsche S, Balmaseda M A, Zuo H and Mogensen K 2017 Arctic sea ice in the global eddy-permitting ocean reanalysis ORAP5; Clim. Dyn. 49 775–789, Scholar
  44. Tietsche S, Day J J, Guemas V, Hurlin W J, Keeley S P E, Matei D, Msadek R, Collins M and Hawkins E 2014 Seasonal to interannual Arctic sea ice predictability in current global climate model; Geophys. Monogr. Ser. 41 1035–1043, Scholar
  45. Vihma T 2014 Effects of Arctic sea ice decline on weather and climate: A review; Surv. Geophys. 35 1175–1214, Scholar
  46. Williams K D, Harris C M, Camp J, Comer R E, Copsey D, Fereday D, Graham T, Hill R, Hinton T, Hyder P, Ineson S, Masato G, Milton S F, Roberts M J, Rowell D P, Sanchez C, Shelly A, Sinha B, Walters D N, West A, Woollings T and Xavier P K 2015 The Met Office global coupled model 2.0 (GC2) configuration; Geosci. Model Dev. 8 1509–1524, Scholar
  47. Zhang J L and Rothrock D A 2003 Modleing global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates; Mon. Wea. Rev. 131 845–861.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • P P Saheed
    • 1
    Email author
  • Ashis K Mitra
    • 1
  • Imranali M Momin
    • 1
  • E N Rajagopal
    • 1
  • Helene T Hewitt
    • 2
  • Ann B Keen
    • 2
  • Sean F Milton
    • 2
  1. 1.National Centre for Medium Range Weather Forecasting, Ministry of Earth SciencesNoidaIndia
  2. 2.United Kingdom Meteorological OfficeExeterUK

Personalised recommendations