Mapping magnetic lineaments and subsurface basement beneath parts of Lower Benue Trough (LBT), Nigeria: Insights from integrating gravity, magnetic and geologic data

  • Mukaila AbdullahiEmail author
  • Upendra K Singh
  • Ravi Roshan


In this study, we present the analysis of the aeromagnetic data of parts of the Lower Benue Trough. Lineament analysis of the aeromagnetic data demonstrated four tectonic trends of the basement terrain. The lineaments are in the northeast to southwest (NE–SW), east, northeast to west, southwest (ENE–WSW), north to south (N–S), and east, southeast to west, northwest (ESE–WNW) directions. The NE–SW and ENE–WSW are the most dominant whereas the N–S and ESE–WNW are the minor trends. The estimated magnetic basement using spectral analysis vary between 3.5 and 5 km and the shallow magnetic sources (depth to top of intrusions) vary between 0.24 and 1.2 km. The result of the basement estimation from the magnetic data is comparable with the previous results from other studies as well as with the basement depth estimated from the gravity data of part of the present study area are incorporated in the study. From the gravity data, we identified sub-basin around Makurdi and basement of the sedimentary basin (5 km) is estimated using GPSO algorithm and Oasis Montaj (Geosoft).


Aeromagnetic data Benue Trough vertical derivative magnetic lineaments GPSO inversion of gravity data. 



The first author wishes to acknowledge the Tertiary Education Trust Fund (TET Fund), Nigeria through Modibbo Adama University of Technology, Yola (Nigeria) for financial support of his PhD research. The data to this research was arranged through the Nigerian Geological Survey Agency (NGSA), Abuja office, Nigeria. We are indebted to Dr Arkoprovo Biswas, the associate editor and the two anonymous reviewers for the constructive comments and suggestions on the paper.


  1. Abdelrahman E M, Abo-Ezz E R, Essa K S, El-Araby T M and Soliman K S 2007 A new least-squares minimization approach to depth and shape determination from magnetic data; Geophys. Prospect. 55 433–446.CrossRefGoogle Scholar
  2. Abdelrahman E M, Abo-Ezz E R and Essa K S 2012 Parametric inversion of residual magnetic anomalies due to simple geometric bodies; Explor. Geophys.  43 178–189.CrossRefGoogle Scholar
  3. Abdelrahman E M and Essa K S 2015 A new method for depth and shape determinations from magnetic data; Pure Appl. Geophys. 172 439–460.CrossRefGoogle Scholar
  4. Abo-Ezz E R and Essa K S 2016 A least-squares minimization approach for model parameters estimate by using a new magnetic formula; Pure Appl. Geophys. 173 1265–1278.CrossRefGoogle Scholar
  5. Adighije C 1981 A gravity interpretation of the Benue Trough, Nigeria; Tectonophys. 79 109–128.CrossRefGoogle Scholar
  6. Agagu O K and Adighije C I 1983 Tectonic and sedimentation framework of the lower Benue Trough, southeastern Nigeria; J. Afr. Earth Sci. 1(3–4) 267–274.Google Scholar
  7. Ajayi C O and Ajakaiye D E 1981 The origin and peculiarities of the Nigerian Benue Trough: Another look from recent gravity data obtained from middle Benue; Tectonophys.  80 285–303.CrossRefGoogle Scholar
  8. Akande O, Zentelli M and Reynolds P H 1989 Fluid inclusion and stable isotope studies of Pb–Zn–fluorite-barite mineralization in lower and middle Benue Trough, Nigeria; Mineral Deposit  24 183–191.CrossRefGoogle Scholar
  9. Ali M Y, Watts A B and Farid A 2014 Gravity anomalies of the United Arab Emirates: Implications for basement structures and infra-Cambrian salt distribution; GeoArab. 19(1) 85–112.Google Scholar
  10. Anudu G K, Stephenson R A and Macdonald D I M 2014 Using high-resolution aeromagnetic data to recognize and map intra-sedimentary volcanic rocks and geological structures across the cretaceous middle Benue Trough, Nigeria; J. Afr. Earth Sci.  99 625–636.CrossRefGoogle Scholar
  11. Benkhelil J 1982 Benue Trough and Benue chain; Geol. Mag. 119 155–168.CrossRefGoogle Scholar
  12. Benkhelil J 1988 Structure et evolution geodynamiquedu basin intracontinental de la Benoue (Nigeria); Bull. Centres Rech. Explor. Pro. Elf-Afquitaine 1207 29–128.Google Scholar
  13. Benkhelil J 1989 The origin and evolution of the Cretaceous Benue Trough (Nigeria); J. Afr. Earth Sci. 6 251–282.CrossRefGoogle Scholar
  14. Bhattacharyya B K 1965 Two dimensional harmonic analysis as a tool for magnetic interpretation; Geophysics  30 829–857.CrossRefGoogle Scholar
  15. Biswas A 2016 Interpretation of gravity and magnetic anomaly over thin sheet-type structure using very fast simulated annealing global optimization technique; Model. Earth Syst. Environ. 2(1) 30.CrossRefGoogle Scholar
  16. Biswas A and Acharya T 2016 A very fast simulated annealing method for inversion of magnetic anomaly over semi-infinite vertical rod-type structure; Model. Earth Syst. Environ. 2(4) 198.CrossRefGoogle Scholar
  17. Blakely R J 1995 Potential theory in gravity and magnetic applications; Cambridge University Press, UK, 63p.CrossRefGoogle Scholar
  18. Bott M H P 1960 The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins; Geophys. J. Roy. Astron. Soc. 3 63–67.CrossRefGoogle Scholar
  19. Chakravarthi V 1995 Gravity interpretation of non-outcropping sedimentary basins in which the density contrast decreases parabolically with depth; Pure Appl. Geophys. 145 327–335.CrossRefGoogle Scholar
  20. Chakravarthi V, Singh S B and Babu G A 2001 INVER2DBASE – A program to compute basement depths of density interfaces above which the density contrast varies with depth; Comput. Geosci27 1127–1133.CrossRefGoogle Scholar
  21. Chakravarthi V and Sundararajan N 2005 Gravity modelling of \(2^{1}/2\) sedimentary basins – a case of variable density contrast; Comput. Geosci31 820–827.Google Scholar
  22. Cordell L and Grauch V J S 1985 Mapping basement magnetization zone from aeromagnetic data in the San Juan Basin, New Mexico; In: The utility of regional gravity and magnetic anomaly maps (eds) Hinze and William J, Soc. Explor. Geophys., Tulsa, Oklahoma, 181–197.Google Scholar
  23. Cratchley C R and Jones G P 1965 An interpretation of the geology and gravity anomalies of the Benue Valley Nigeria; Oversea Geological Survey London.Google Scholar
  24. de Castro D I, Bezerra F H R, Sousa M O I and Fuck R A 2012 Influence of Neoproterozoic tectonic fabric on the origin of the Potiguar Basin, northeastern Brazil and its links with West Africa based on gravity and magnetic data; J. Geodyn.  54 29–42.CrossRefGoogle Scholar
  25. Djomani Y H P, Nnange J M, Diament M, Ebinger C J and Fairhead J D 1995 Effective elastic thickness and crustal thickness variations in west central Africa inferred from gravity data; J. Geophys. Res. 100 22047–22070.CrossRefGoogle Scholar
  26. Dobrin M B and Savit C H 1988 Introduction to geophysical prospecting; McGraw-Hill, New York, 867p.Google Scholar
  27. Eberhart R C and Kennedy J 1995 A new optimizer using particle swarm theory; Proceedings of the sixth international symposium on micro machine and human science, IEEE service center, Piscataway, NJ, Nagoya, Japan, pp. 39–43.Google Scholar
  28. Eberhart R C and Shi Y 2001 Particle swarm optimization: Developments, applications and resources; Proceedings of congress on evolutionary computation, IEEE service center, Piscataway, NJ, Seoul, Korea.Google Scholar
  29. Ekinci Y L, Ertekin C and Yiğitbaş E 2013 On the effectiveness of directional derivative based filters on gravity anomalies for edge approximation: Synthetic simulations and a case study from the Aegean Graben System (Western Anatolia, Turkey); J. Geophys. Eng. 10(3) 035005.CrossRefGoogle Scholar
  30. Ekinci Y L and Yiğitbaş E 2015 Interpretation of gravity anomalies to delineate some structural features of Biga and Gelibolu Peninsulas and their surroundings (north–west Turkey); Geodin. Acta 27(4) 300–319.CrossRefGoogle Scholar
  31. Ekinci Y L 2016 MATLAB-based algorithm to estimate depths of isolated thin dike-like sources using higher-order horizontal derivatives of magnetic anomalies; Springerplus  5 1384.CrossRefGoogle Scholar
  32. El-Kaliouby H M and Al-Garni M A 2009 Inversion of self-potential anomalies caused by 2D inclined sheets using neural networks; J. Geophys. Eng6 29–34.CrossRefGoogle Scholar
  33. Essa K S and Elhussein M 2017 A new approach for the interpretation of magnetic data by a 2D dipping dike; J. Appl. Geophys. 136 431–443.CrossRefGoogle Scholar
  34. Essa K S and Elhussein M 2018 PSO (Particle swarm optimization) for interpretation of magnetic anomalies caused by simple geometrical structures; Pure Appl. Geophys. 175(10) 3539–3553.CrossRefGoogle Scholar
  35. Garcia-Abdeslem J and Ness G E 1994 Inversion of the power spectrum from magnetic anomalies; Geophysics  59 391–401.CrossRefGoogle Scholar
  36. Guiraud R and Maurin J C 1992 Early Cretaceous rifts of western and central Africa; Tectonophys. 213 153–168.CrossRefGoogle Scholar
  37. Jamian J J, Abdullah M N, Mokhlis H, Mustafa M W and Bakar A H A 2014 Global particle swarm optimization for high dimension numerical functions analysis; J. Appl. Math. 329193 1–14.CrossRefGoogle Scholar
  38. Jorgensen G J and Bosworth W 1989 Gravity modeling in the Central African Rift System, Sudan: Rift geometries and tectonic significance; J. Afr. Earth Sci.  8 283–306.CrossRefGoogle Scholar
  39. Kennedy J and Eberhart R 1995 Particle swarm optimization; IEEE Int. Conf. Neural. Netw. 4 1942–1948.Google Scholar
  40. Khalil A, Abdel Hafeez T H, Saleh H S and Mohamed W H 2016 Inferring the subsurface basement depth and the structural trends as deduced from aeromagnetic data at West Beni Suef area, Western Desert, Egypt; NRIAG J. Astro. Geophys.  5(2) 380–392.CrossRefGoogle Scholar
  41. King L C 1950 Outline and disruption of Gondwanaland; Geol. Mag. 87 353–359.CrossRefGoogle Scholar
  42. Maluski H, Coulon C, Popoff M and Baudin P 1995 \({}^{40}{{\rm Ar/}}^{39}{{\rm Ar}}\) chronology, petrology and geodynamic setting of Mesozoic to early Cenozoic magmatism from the Benue Trough, Nigeria; J. Geol. Soc. London  152 311–326.Google Scholar
  43. Maurin J C, Benkhelil J and Robineau B 1986 Fault rocks of the Kaltungo lineament, NE Nigeria and their relationship with Benue Trough tectonics; J. Geol. Soc. London 143 587–599.CrossRefGoogle Scholar
  44. Maurizio F, Tatina Q and Angelo S 1998 Exploration of a lignite bearing in northern Ireland, using ground magnetic; Geophysics 62 1143–1150.Google Scholar
  45. MMSD (Ministry of Mines and Steel Development) 2010 Barites: Exploration opportunities in Nigeria; Nigerian Geological Survey Agency, Abuja, 12p.Google Scholar
  46. Moreau C, Reynoult J M, Deruelle B and Robineau B 1987 A new tectonic model for the Cameroon Line, Central Africa; Tectonophys.  139 317–334.CrossRefGoogle Scholar
  47. Nabighian M N 1972 The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation; Geophysics 37(3) 507–517.CrossRefGoogle Scholar
  48. NGSA (Nigerian Geological Survey Agency) 2009 Geological and mineral resource map of Nigeria; Authority of the Federal Republic of Nigeria.Google Scholar
  49. Nwachukwu S O 1972 The tectonic evolution of the southern portion of the Benue Trough, Nigeria; Geol. Mag. 109 411–419.CrossRefGoogle Scholar
  50. Ofoegbu C O 1984 Interpretation of aeromagnetic anomalies over Lower and Middle Benue Trough of Nigeria; Geophys. J. Roy. Astron. Soc. 79 813–823.CrossRefGoogle Scholar
  51. Ofoegbu C O 1985 Interpretation of an aeromagnetic profile across the Benue Trough of Nigeria; J. Afr. Earth Sci. 3(3) 293–296.Google Scholar
  52. Ofoegbu C O and Onuoha K M 1991 Analysis of magnetic data over the Abakaliki anticlinorium of the Lower Benue Trough, Nigeria; Mar. Petrol. Geol.  8 174–183.CrossRefGoogle Scholar
  53. Oha I A, Onuoha K M, Nwegbu A N and Abba A U 2016 Interpretation of high resolution aeromagnetic data over southern Benue Trough, southeastern Nigeria; J. Earth Syst. Sci.  125 369–385.CrossRefGoogle Scholar
  54. Olade M A 1978 Early Cretaceous basalt volcanism and initial continental rifting in Benue Trough, Nigeria; Natur. Intern. J. Sci. 273 458–559.Google Scholar
  55. Pallero J L G, Fernandez-Martinez J L, Bonvalot S and Fudym O 2015 Gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization; J. Appl. Geophys116 180–191.CrossRefGoogle Scholar
  56. Phillips J D 1998 Processing and interpretation of aeromagnetic data from Santa Cruz Basin–Patahonia mountains area, south-central Arizona; US Geological Survey Open File Report, pp. 2–98.Google Scholar
  57. Rao C V, Chakravarthi V and Raju M L 1993 Parabolic density function in sedimentary basin modelling; Pure Appl. Geophys. 140(3) 493–501.CrossRefGoogle Scholar
  58. Rao C V, Pramanik A G, Kumar G V R K and Raju M L 1994 Gravity interpretation of sedimentary basins with hyperbolic density contrast; Geophys. Prospect. 42 825–839.CrossRefGoogle Scholar
  59. Roest W R, Verhoef J and Pilkington M 1992 Magnetic interpretation using the 3D analytic signal; Geophysics 57 116–125.CrossRefGoogle Scholar
  60. Roshan R and Singh U K 2017 Inversion of residual gravity anomalies using tuned PSO; Geosci. Instrum. Method. Data Syst. 6 71–79.CrossRefGoogle Scholar
  61. Rozimant K, Büyüksarac A and Bektaş Ö 2009 Interpretation of magnetic anomalies and estimation of depth of magnetic crust in Slovakia; Pure Appl. Geophys. 166 471–484.CrossRefGoogle Scholar
  62. Salem A, Williams S, Fairhead J D, Ravat D and Smith R 2007 Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives; Leading Edge  26 1502–1505.CrossRefGoogle Scholar
  63. Santos F A M 2010 Inversion of self-potential of idealized bodies’ anomalies using particle swarm optimization; Comput. Geosci36 1185–1190.CrossRefGoogle Scholar
  64. Singh A and Biswas A 2016 Application of global particle swarm optimization for inversion of residual gravity anomalies over geological bodies with idealized geometries; Natur. Resour. Res.,
  65. Spector A and Grant F S 1970 Statistical model for interpreting aeromagnetic data; Geophysics  35 293–302.CrossRefGoogle Scholar
  66. Stoneley R 1966 The Niger delta region in the light of the theory of continental drift; Geol. Mag.  103 385–397.CrossRefGoogle Scholar
  67. Talwani M, Worzel J and Ladisman M 1959 Rapid gravity computations for two dimensional bodies with application to the Mendocino submarine fracture zone; J. Geophys. Res.  64(1) 49–59.CrossRefGoogle Scholar
  68. Telford W M, Geldart L P and Sheriff R E 1998 Applied geophysics; Springer, Berlin, 770p.Google Scholar
  69. Uzuakpunwa A B 1974 The Abakaliki pyroclastics, eastern Nigeria: New age and tectonic implication; Geol. Mag. 111 65–70.CrossRefGoogle Scholar
  70. Verduzco B, Fairhead J D, Green C M and Mackenzie C 2004 New insights into magnetic derivatives for structural mapping; Leading Edge  23 116–119.CrossRefGoogle Scholar
  71. Wright J B 1968 South Atlantic continental drift and the Benue Trough; Tectonophys. 6 301–310.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Mukaila Abdullahi
    • 1
    • 2
    Email author
  • Upendra K Singh
    • 1
  • Ravi Roshan
    • 1
  1. 1.Department of Applied GeophysicsIndian Institute of Technology (ISM)DhanbadIndia
  2. 2.Physics Unit, Department of Science Laboratory TechnologyModibbo Adama University of TechnologyYolaNigeria

Personalised recommendations