Journal of Chemical Sciences

, 131:110 | Cite as

DFT studies on the structure and stability of tetraaza macrocyclic nickel(II) complexes containing dicarbinolamine ligand moiety

  • E J Padma MalarEmail author
  • Rebecca Jacob
  • S Balasubramanian
Regular Article


Density functional theory calculations at M052X/6-311++G** level were performed to understand the structure and stability of Ni(II) tetraaza macrocyclic dicarbinolamine complex 1. The preferential stability of 1 over the hitherto unknown Ni(II) complex having fully conjugated macrocyclic ligand 2, is examined by analyzing geometric and electronic structures and energy considerations. The present calculations predict that in the trans (C2) structure, 1 is 102 kcal/mol more stable than its components 2 and 2(OH) at M062X-D3/def2-QZVP//M052X/6-311++G** level. This significant stabilization explains the formation of 1 as experimentally observed. The calculations support a distorted square planar environment for Ni in 1, in agreement with the observed spectral and magnetic properties. In order to understand the stability of 1, we examined the second-order stabilizing interactions in natural bond orbital (NBO) basis, the role of the noncovalent dispersion energy, macrocyclic cavity size, Ni-ligand covalent bond strength, natural electronic population on the atomic centers and the nature of the frontier molecular orbitals in the complexes. The present study reveals that the higher stability of 1 over 2 is primarily due to the stronger covalent bonds between the Ni(II) centre, and two of the coordinating nitrogen atoms in 1 than in 2 and significant second-order stabilizing interactions originating from the NBOs involving the oxygen atoms.

Graphic abstract

Density functional theory calculations at M052X/6-311++G** level explains the structure and stability of Ni(II) tetraaza macrocyclic dicarbinolamine complex.


Ni(II) macrocyclic dicarbinolamine complex Ni-ligand covalent bond strength M052X/6-311++G** dispersion energy natural electronic population macrocyclic cavity size 


Supplementary material

12039_2019_1688_MOESM1_ESM.pdf (699 kb)
Supplementary material 1 (PDF 698 kb)


  1. 1.
    Huang X and Groves J T 2018 Oxygen activation and radical transformations in heme proteins and metalloporphyrins Chem. Rev. 118 2491PubMedCrossRefGoogle Scholar
  2. 2.
    Guo M, Corona T, Ray K and Nam W 2019 Synthesis of new tren-based heme and nonheme high-valent iron and manganese oxo cores in biological and abiological oxidation reactions ACS Cent. Sci. 5 13PubMedCrossRefGoogle Scholar
  3. 3.
    Telser J, Horng Y C, Becker D F, Hoffman B M and Ragsdale S W 2000 On the assignment of nickel oxidation states of the Ox1 and Ox2 forms of methyl-coenzyme M Reductase J. Am. Chem. Soc. 122 182CrossRefGoogle Scholar
  4. 4.
    Solomon E I, Brunold T C, Davis M I, Kemsley J N, Lee S-K, Lehnert N, Neese F, Skulan A J, Yang Y-S and Zhou J 2000 Geometric and electronic structure/function correlations in non-heme iron enzymes Chem. Rev. 100 235PubMedCrossRefGoogle Scholar
  5. 5.
    Solomon E I, Light K M, Liu L V, Srnec M and Wong S D 2013 Geometric and electronic structure contributions to function in non-heme iron enzymes Acc. Chem. Res. 46 2725PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hohenberger J, Ray K and Meyer K 2012 The biology and chemistry of high-valent iron–oxo and iron–nitrido complexes Nat. Commun. 3 720PubMedCrossRefGoogle Scholar
  7. 7.
    Cook S A and Borovik A S 2015 Molecular designs for controlling the local environments around metal ions Acc. Chem. Res. 48 2407PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Shaik S, Kumar D, de Visser S P, Altun A and Thiel W 2005 Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes Chem. Rev. 105 2279PubMedCrossRefGoogle Scholar
  9. 9.
    Goldberg D P 2007 Corrolazines: New frontiers in high-valent metalloporphyrinoid stability and reactivity Acc. Chem. Res. 40 626PubMedCrossRefGoogle Scholar
  10. 10.
    Liang X and Sadler P 2004 Cyclam complexes and their applications in medicine Chem. Soc. Rev. 33 246PubMedCrossRefGoogle Scholar
  11. 11.
    Wainwright K P 1997 Synthetic and structural aspects of the chemistry of saturated polyaza macrocyclic ligands bearing pendant coordinating groups attached to nitrogen Coord. Chem. Rev. 166 35CrossRefGoogle Scholar
  12. 12.
    Antunes P, Campello P M, Delgado R, Drew M G B, Felix V and Santos I 2003 Metal complexes of a tetraazacyclophane: Solution and molecular modelling studies Dalton Trans. 1852 Google Scholar
  13. 13.
    Shircliff A D, Wilson K R, Cannon D J, Jones D G, Zhang Z, Chen Z, Yin G, Prior T J and Hubin T J 2015 Synthesis structural studies and oxidation catalysis of the manganese(II) iron(II) and copper(II) complexes of a 2-pyridylmethyl pendant armed side-bridged cyclam Inorg. Chem. Comm. 59 71CrossRefGoogle Scholar
  14. 14.
    Ranganathan R S, Raju N, Fan H, Zhang X, Tweedle M F, Desreux J F and Jacques V 2002 Polymethylated DOTA Ligands. 2. Synthesis of rigidified lanthanide chelates and studies on the effect of alkyl substitution on conformational mobility and relaxivity Inorg. Chem. 41 6856PubMedCrossRefGoogle Scholar
  15. 15.
    Serres R G, Grapperhaus C A, Bothe E, Bill E, Weyhermüller T, Neese F and Wieghardt K 2004 Structural spectroscopic and computational study of an octahedral non-heme{Fe-NO}6–8 series: [Fe(NO)(cyclam-ac)]2+/+/0 J. Am. Chem. Soc. 126 5138PubMedCrossRefGoogle Scholar
  16. 16.
    Lauffer R B 1987 Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design Chem. Rev. 87 901CrossRefGoogle Scholar
  17. 17.
    Tweedle M F 1989 In Lanthanide probes in life, chemical and earth sciences: Theory and practice J-C G Bünzli and G R Choppin (Eds.) (New York: Elsevier) p. 127Google Scholar
  18. 18.
    Wang X, Jaraquemada-Peláez M G, Rodríguez-Rodríguez C, Cao Y, Buchwalder C, Choudhary N, Jermilova U, Ramogida C F, Saatchi K, Häfeli U O, Patrick B O and Orvig C 2018 H4octox: Versatile bimodal octadentate acyclic chelating ligand for medicinal inorganic chemistry J. Am. Chem. Soc. 140 15487PubMedCrossRefGoogle Scholar
  19. 19.
    Fur M L, Beyler M, Lepareur N, Fougère O, Platas-Iglesias C, Rousseaux O and Tripier R 2016 Pyclen tri-n-butylphosphonate ester as potential chelator for targeted radiotherapy: From yttrium(III) complexation to 90Y radiolabeling Inorg. Chem. 55 8003PubMedCrossRefGoogle Scholar
  20. 20.
    Ibrahim R, Tsuchiya S and Ogawa S 2000 A color-switching molecule: Specific properties of new tetraaza macrocycle zinc complex with a facile hydrogen atom J. Am. Chem. Soc. 122 12174CrossRefGoogle Scholar
  21. 21.
    Francke R, Schille B and Roemelt M 2018 Homogeneously catalyzed electroreduction of carbon dioxide—methods mechanisms and catalysts Chem. Rev. 118 9 4631PubMedCrossRefGoogle Scholar
  22. 22.
    Félix V, Costa J, Delgado R, Drew M G. B. Duarte M T, Resende C 2001 X-Ray diffraction and molecular mechanics studies of 12- 13- and 14-membered tetraaza macrocycles containing pyridine: effect of the macrocyclic cavity size on the selectivity of the metal ion J. Chem. Soc. Dalton Trans. 1462Google Scholar
  23. 23.
    Leugger A P, Hertli L and Kaden T A 1978 Metal complexes with macrocyclic ligands. XI. Ring size effect on the complexation rates with transition metal ions Helv. Chim. Acta 61 2296CrossRefGoogle Scholar
  24. 24.
    Comba P and Schiek W 2003 Fit and misfit between ligands and metal ions Coord. Chem. Rev. 21 238Google Scholar
  25. 25.
    Comba P, Lampeka Y D, Nazarenko A Y, Prikhod’ko A I, Pritzkow H and Taraszewska J 2002 Cooperative effects in the binding of substrates to bis-macrocyclic ligand nickel(II) and nickel(III) complexes Eur. J. Inorg. Chem. 1871Google Scholar
  26. 26.
    Barefield E K, Bianchi A, Billo E J, Connolly P J, Paoletti P, Summers J S and Van Derveer D G 1986 Thermodynamic and structural studies of configurational isomers of [Ni(cyclam)]2+ Inorg. Chem. 25 4197CrossRefGoogle Scholar
  27. 27.
    Kent B E 2010 Coordination chemistry of N-tetraalkylated cyclam ligands - A status report Coord. Chem. Rev254 1607CrossRefGoogle Scholar
  28. 28.
    Mochizuki K and Kondo T 1995 Isolation and Vis-absorption spectrum of trans-[Ni(OH2)2(cyclam)]Cl2.4H2O Inorg. Chem. 34 6241CrossRefGoogle Scholar
  29. 29.
    Choi K Y, Kim Y J, Ryu H and Suh I H 1999 Synthesis and characterization of nickel(II) complexes of a tetraaza macrocycle containing axial ligands Inorg. Chem. Commun. 2 176CrossRefGoogle Scholar
  30. 30.
    Zeigerson E, Bar I, Bernstein J, Kirschenbaum L J and Meyerstein D 1982 Stabilization of the tervalent nickel complex with meso-5 7 7 12 14 14-hexamethyl-1 4 8 11-tetraazacyclotetradecane by axial coordination of anions in aqueous solution Inorg. Chem. 21 73CrossRefGoogle Scholar
  31. 31.
    Bosnich B, Poon C K and Tobe M L 1965 Complexes of cobalt(III) with a cyclic tetradentate secondary amine Inorg. Chem. 4 1102CrossRefGoogle Scholar
  32. 32.
    Meyer K, Bendix J, Bill E, Weyhermüller T and Wieghardt K 1998 Molecular and electronic structure of nitridochromium(V) complexes with macrocyclic amine ligands Inorg. Chem. 37 5180CrossRefGoogle Scholar
  33. 33.
    Anuradha S, Malar E J P and Vijayaraghavan V R 2015 Kinetic measurements and quantum chemical calculations on low spin Ni(II)/(III) macrocyclic complexes in aqueous and sulphato medium J. Chem. Sci. 127 1287CrossRefGoogle Scholar
  34. 34.
    Sankaran A, Malar E J P and Vijayaraghavan V R 2017 Study of behaviour of Ni(III) macrocyclic complexes in acidic aqueous medium through kinetic measurement involving hydrogen peroxide oxidation and DFT calculations J. Chem. Sci. 129 193CrossRefGoogle Scholar
  35. 35.
    Barefield E K, Wagnor F and Hodges K D 1976 Synthesis of macrocyclic tetramines by metal ion assisted cyclization reactions Inorg. Chem. 15 1370CrossRefGoogle Scholar
  36. 36.
    Busch D H and Bailar J C Jr 1956 The iron(II)-methine chromophore J. Am. Chem. Soc. 78 1137CrossRefGoogle Scholar
  37. 37.
    Eggleston D S and Jackels S C 1980 Tetrasubstituted [14]-l3810-tetraenen4 macrocyclic complexes: Synthesis organic precursor and template reaction mechanism Inorg. Chem. 19 1593CrossRefGoogle Scholar
  38. 38.
    Haque Z P, McPartlin M and Tasker P A 1979 Macrocyclic ligand synthesis. Isolation of a dicarbinolamine complex from zinc(II)-promoted cyclization reaction Inorg. Chem. 18 2920CrossRefGoogle Scholar
  39. 39.
    Balasubramanian S 1987 Macrocyclic dicarbinolamine complexes of nickel(II) with planar N4(N2) ligands: Synthesis and spectral and electrochemical properties Inorg. Chem. 26 553CrossRefGoogle Scholar
  40. 40.
    Sprung M A 1940 A Summary of the reactions of aldehydes with amines Chem. Rev. 26 297CrossRefGoogle Scholar
  41. 41.
    Jencke W P 1969 Catalysis in chemistry and enzymology (New York: McGraw Hill)Google Scholar
  42. 42.
    Parr R G and Yang W 1989 Density functional theory of atoms and molecules (New York: Oxford University)Google Scholar
  43. 43.
    Becke A D 1988 Density-functional exchange energy approximation with correct asymptotic behaviour Phys. Rev. A 38 3098CrossRefGoogle Scholar
  44. 44.
    Perdew J P 1986 Density functional approximation for the correlation energy of the inhomogeneous electron gas Phys. Rev. B 33 8822CrossRefGoogle Scholar
  45. 45.
    Schweinfurth D, Krzystek J, Schapiro I, Demeshko S, Klein J, Telser J, Ozarowski A, Su C Y, Meyer F, Atanasov M, Neese F and Sarkar B 2013 Electronic structures of octahedral Ni(II) complexes with “click” derived triazole ligands: a combined structural magnetometric spectroscopic and theoretical study Inorg. Chem. 52 6880PubMedCrossRefGoogle Scholar
  46. 46.
    Petrenko T, Ray K, Wieghardt K and Neese F 2006 Vibrational markers for the open-shell character of transition metal bis-dithiolenes: an infrared resonance Raman and quantum chemical study J. Am. Chem. Soc. 128 4422PubMedCrossRefGoogle Scholar
  47. 47.
    Pollock C J, Delgado-Jaime M U, Atanasov M, Neese F and DeBeer S 2014 Kβ mainline X-ray emission spectroscopy as an experimental probe of metal–ligand covalency J. Am. Chem. Soc. 136 9453PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Fritsch N, Wick C R, Waidmann T, Dral P O and Tucher J 2014 Multiply bonded metal(II) acetate (rhodium ruthenium and molybdenum) complexes with the trans-12-bis(N-methylimidazol-2yl)ethylene ligand Inorg. Chem. 53 12305PubMedCrossRefGoogle Scholar
  49. 49.
    London F 1937 The general theory of molecular forces Trans. Faraday Soc. 33 8bCrossRefGoogle Scholar
  50. 50.
    Liptrot D J and Power P P 2017 London dispersion forces in sterically crowded inorganic and organometallic molecules Nature Rev. Chem. 1 0004CrossRefGoogle Scholar
  51. 51.
    Wagner J P and Schreiner P R 2015 London dispersion in molecular chemistry -reconsidering steric effects Angew. Chem. Int. Ed. 54 12274CrossRefGoogle Scholar
  52. 52.
    Wagner J P and Schreiner P R 2016 London dispersion decisively contributes to the thermodynamic stability of bulky NHC-coordinated main group compounds J. Chem. Theor. Comput. 12 231CrossRefGoogle Scholar
  53. 53.
    Zhao Y, Schultz N E and Truhlar D G 2006 Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry thermochemical kinetics and noncovalent interactions J. Chem. Theor. Comput. 2 364CrossRefGoogle Scholar
  54. 54.
    Zhao Y and Truhlar D G 2008 The M06 suite of density functionals for main group thermochemistry thermochemical kinetics noncovalent interactions excited states and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals Theor. Chem. Acc. 120 215CrossRefGoogle Scholar
  55. 55.
    Grimme S 2011 Density functional theory with London dispersion corrections WIREs Comput. Mol. Sci. 1 211CrossRefGoogle Scholar
  56. 56.
    Goerigk L, Grimme S 2011 A thorough benchmark of density functional methods for general main group thermochemistry kinetics and noncovalent interactions Phys. Chem. Chem. Phys. 13 6670PubMedCrossRefGoogle Scholar
  57. 57.
    Rezac J and Hobza P 2016 Benchmark calculations of interaction energies in noncovalent complexes and their applications Chem. Rev. 116 5038PubMedCrossRefGoogle Scholar
  58. 58.
    Malar E J P and Divya P 2018 Structural stability in dimer and tetramer clusters of l-alanine in the gas-phase and the feasibility of peptide bond formation J. Phys. Chem. B 122 6462PubMedCrossRefGoogle Scholar
  59. 59.
    Becke A D 1993 Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys. 98 5648CrossRefGoogle Scholar
  60. 60.
    Lee C, Yang W and Parr R G 1988 Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B 37 785CrossRefGoogle Scholar
  61. 61.
    Mayer I 1983 Charge bond order and valence in the ab initio SCF theory Chem. Phys. Lett. 97 270CrossRefGoogle Scholar
  62. 62.
    Mayer I 1984 Bond order and valence: Relations to Mulliken’s population analysis Int. J. Quant. Chem. 26 151CrossRefGoogle Scholar
  63. 63.
    Mayer I 1985 Bond orders and valences in the SCF theory: A comment Theor. Chim. Acta 67 315CrossRefGoogle Scholar
  64. 64.
    Frisch M J et al. 2004 GAUSSIAN 03 Revision E.01 (Wallingford CT: Gaussian Inc.)Google Scholar
  65. 65.
    Neese F 2003 An improvement of the resolution of the identity approximation for the formation of the coulomb matrix J. Comp. Chem. 24 1740CrossRefGoogle Scholar
  66. 66.
    Weigend F and Ahlrichs R 2005 Balanced basis sets of split valence triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy Phys. Chem. Chem. Phys. 7 3297CrossRefGoogle Scholar
  67. 67.
    Weigend F 2006 Accurate coulomb-fitting basis sets for H to Rn Phys. Chem. Chem. Phys. 8 1057PubMedCrossRefGoogle Scholar
  68. 68.
    Neese F 2012 The ORCA program system Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2 73Google Scholar
  69. 69.
    Neese F 2018 Software update: The ORCA program system Version 4.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8 e1327Google Scholar
  70. 70.
    Foster J P and Weinhold F J 1980 Natural hybrid orbitals J. Am. Chem. Soc. 102 7211CrossRefGoogle Scholar
  71. 71.
    Glendening E D, Reed A E, Carpenter J E and Weinhold F 1990 NBO Version 3.1 (Wisconsin: University of Wisconsin)Google Scholar
  72. 72.
    Malar E J P 2003 Do penta- and decaphospha analogues of lithocene anion and beryllocene exist? Analysis of stability structure and bonding by hybrid density functional study Inorg. Chem. 42 3873PubMedCrossRefGoogle Scholar
  73. 73.
    Malar E J P 2004 Can the cyclo-P5 ligand introduce basicity at the transition metal center in metallocenes? A hybrid density functional study on the cyclo-P5 analogues of metallocenes of Fe, Ru and Os Eur. J. Inorg. Chem. 2723Google Scholar
  74. 74.
    Malar E J P 2005 Density functional theory analysis of some triple-decker sandwich complexes of iron containing cyclo-P5 and cyclo-As5 ligands Theor. Chem. Acc. 114 213CrossRefGoogle Scholar
  75. 75.
    Indubala E, Dhanasekar M, Sudha V, Malar E J P, Divya P, Sherine J, Rajagopal R, Bhat S V and Harinipriya S 2018 L-Alanine capping of ZnO nanorods: Increased carrier concentration in ZnO/ CuI heterojunction diode RSC Adv. 8 5350CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.National Centre for Ultrafast ProcessesUniversity of Madras, Taramani CampusChennaiIndia
  2. 2.School of ChemistryUniversity of SydneySydneyAustralia
  3. 3.Department of Inorganic ChemistryUniversity of Madras, Guindy CampusChennaiIndia

Personalised recommendations