Journal of Chemical Sciences

, 131:109 | Cite as

Structure-dependence of electrical conductivity and electrocatalytic properties of Sr2Mn2O6 and CaSrMn2O6

  • Ram Krishna Hona
  • Farshid RamezanipourEmail author
Regular Article


Remarkable enhancement of the electrical conductivity and electrocatalytic activity is demonstrated as a result of the transformation of crystal structure between Sr2Mn2O6 and CaSrMn2O6. The structure of Sr2Mn2O6 is known to consist of dimeric units of face-sharing MnO6 octahedra. Whereas, CaSrMn2O6 contains individual octahedra, connected to each other through corner-sharing. Herein we show that the changes in the crystal structure result in significant improvement of the electrical conductivity, by five orders of magnitude, for CaSrMn2O6, compared to Sr2Mn2O6. Variable temperature conductivity studies from 25–800 °C indicate semiconducting properties for both compounds, where the enhanced conductivity of CaSrMn2O6 persists in the entire temperature range. The electrocatalytic activity of both compounds toward oxygen evolution reaction (OER) has also been investigated, indicating superior OER activity of CaSrMn2O6 compared to Sr2Mn2O6. A pronounced improvement in the onset potential and kinetics of OER is observed for CaSrMn2O6. These studies demonstrate an important correlation between crystal structure, electrical conductivity and electrocatalytic properties.

Graphic abstract

Remarkable enhancement of the electrical conductivity and electrocatalytic activity is demonstrated as a result of the transformation of crystal structure between Sr2Mn2O6 and CaSrMn2O6.


electrical conductivity electrocatalysis crystal structure 



F. R. thanks the Conn Center for Renewable Energy Research. This work is supported in part by the National Science Foundation under Cooperative Agreement No. 1355438.


  1. 1.
    Lee K J and Iguchi E 1995 Electronic properties of SrMnO3x J. Solid State Chem. 114 242CrossRefGoogle Scholar
  2. 2.
    Kim C M, Seo J W, Choi S M, Seo W S, Lee S, Lim Y S and Park K 2015 Structural and thermoelectric properties of n-type Sr1−xTixMnO3−δ perovskite system Electron. Mater. Lett. 11 276Google Scholar
  3. 3.
    Suescun L, Chmaissem O, Mais J, Dabrowski B and Jorgensen J D 2007 Crystal structures, charge and oxygen-vacancy ordering in oxygen deficient perovskites SrMnOx (x<2.7) J. Solid State Chem. 180 1698Google Scholar
  4. 4.
    Belik A, Matsushita Y, Katsuya Y, Tanaka M, Kolodiazhnyi T, Isobe M and Takayama-Muromachi E 2011 Crystal structure and magnetic properties of 6H-SrMnO3 84 094438Google Scholar
  5. 5.
    Liu T, Yang, X, Ma C, Hao X, Liang X, Liu F, Liu F, Yang C, Zhu H and Lu G 2018 CeO2-based mixed potential type acetone sensor using MMnO3 (M: Sr, Ca, La and Sm) sensing electrode Solid State Ionics 317 53Google Scholar
  6. 6.
    Ryu J, O’Hayre R and Lee H 2014 Structural analysis and electrochemical properties of cobalt-doped Sr0.9Ce0.1MnO3−δ cathode for IT-SOFCs J. Mater. Res. 29 2667Google Scholar
  7. 7.
    Anikina P V, Markov A A, Patrakeev M V, Leonidov I A and Kozhevnikov V L 2009 The structure, nonstoichiometry, and thermodynamic characteristics of oxygen in strontium ferrite doped with niobium, SrFe1−xNb xO3−δ Russian J. Phys. Chem. A 83 699Google Scholar
  8. 8.
    8. Zhu Z-L, Gu J-H, Jia Y and Hu X 2012 A comparative study of electronic structure and magnetic properties of SrCrO3 and SrMoO3 Physic. B Cond. Matt. 407 1990CrossRefGoogle Scholar
  9. 9.
    Zhang W, Meng J, Zhang X, Zhang L, Liu X and Meng J 2018 Co-incorporating enhancement on oxygen vacancy formation energy and electrochemical property of Sr2Co1+xMo1−xO6−δ cathode for intermediate-temperature solid oxide fuel cell Solid State Ionics 316 20Google Scholar
  10. 10.
    Gorodea I A 2014 Influence of the B-site cation nature on crystal structure and magnetic properties of Ca2BMoO6 (B = Cr, La, Sm) double perovskite Acta Chemica Iasi 22 145Google Scholar
  11. 11.
    Hona R K, Huq A, Mulmi S and Ramezanipour F 2017 Transformation of structure, electrical conductivity, and magnetism in AA′Fe2O6−δ, A = Sr, Ca and A′ = Sr Inorg. Chem. 56 9716Google Scholar
  12. 12.
    Hona R K, Huq A and Ramezanipour F 2017 Unraveling the role of structural order in the transformation of electrical conductivity in Ca2FeCoO6−δ, CaSrFeCoO6−δ, and Sr2FeCoO6−δ Inorg. Chem. 56 14494Google Scholar
  13. 13.
    Mulmi S, Hona R K, Jasinski J B and Ramezanipour F 2018 Electrical conductivity of Sr2−xCaxFeMnO5 (x = 0, 1, 2) J. Solid State Electrochem. 22 2329CrossRefGoogle Scholar
  14. 14.
    Hona R K and Ramezanipour F 2018 Variation in electrical conductivity of A2Fe2O5 (A = Sr, Ba): The role of structural order Mater. Res. Express 5 076307CrossRefGoogle Scholar
  15. 15.
    Molinari M, Tompsett D A, Parker S C, Azough F and Freer R 2014 Structural, electronic and thermoelectric behaviour of CaMnO3 and CaMnO(3−δ) J. Mater. Chem. A 2 14109CrossRefGoogle Scholar
  16. 16.
    Hosaka Y, Ichikawa N, Saito T, Manuel P, Khalyavin D, Attfield J P and Shimakawa Y 2015 Two-dimensional charge disproportionation of the unusual high valence state Fe4+ in a layered double perovskite J. Am. Chem. Soc. 137 7468PubMedCrossRefGoogle Scholar
  17. 17.
    Ganesanpotti S, Tassel C, Hayashi N, Goto Y, Bouilly G, Yajima T, Kobayashi Y and Kageyama H 2014 Charge disproportionation and magnetoresistivity in a double perovskite with Alternate Fe4+ (d4) and Mn4+ (d3) layers Eur. J. Inorg. Chem. 15 2576Google Scholar
  18. 18.
    Chan T S, Liu R S, Hu S F and Lin J G 2005 Structure and physical properties of double perovskite compounds Sr2FeMO6 (M = Mo, W) Mater. Chem. Phys. 93 314Google Scholar
  19. 19.
    Sayani M and Sebastiaan van D 2014 Pulsed laser deposition of La1−xSrxMnO3: thin-film properties and spintronic applications J. Phys. D Appl. Phys. 47 034010CrossRefGoogle Scholar
  20. 20.
    Cui L and Yang L 2012 Magnetic and transport properties of the double perovskite Sr2FeMnO6 Adv. Mater. Res. 393–395 157Google Scholar
  21. 21.
    Markiewicz E, Bujakiewicz-Koronska R, Budziak A, Kalvane A and Nalecz D M 2014 Impedance spectroscopy studies of SrMnO3, BaMnO3 and Ba0.5Sr0.5MnO3 ceramics Phase Trans. 87 1060Google Scholar
  22. 22.
    Töpfer J, Pippardt U, Voigt I and Kriegel R 2004 Structure, nonstoichiometry and magnetic properties of the perovskites Sr1−xCaxMnO3−δ Solid State Sci. 6 647Google Scholar
  23. 23.
    Larson A C and Von Dreele A C 1994 General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR, 86–748.Google Scholar
  24. 24.
    Toby B H 2001 EXPGUI, a graphical user interface for GSAS J. Appl. Crystallogr. 34 210CrossRefGoogle Scholar
  25. 25.
    Hona R K and Ramezanipour F 2018 Disparity in electrical and magnetic properties of isostructural oxygen-deficient perovskites BaSrCo2O6−δ and BaSrCoFeO6−δ J. Mater. Sci. Mater. Electron. 29 13464CrossRefGoogle Scholar
  26. 26.
    Hona R K, Huq A and Ramezanipour F 2018 Electrical properties of the ordered oxygen-deficient perovskite Ca2Fe0.5Ga1.5O5 Ionics 25 1315CrossRefGoogle Scholar
  27. 27.
    Aschauer U, Pfenninger R, Selbach S M, Grande T and Spaldin N A 2013 Strain-controlled oxygen vacancy formation and ordering in CaMnO3 Phys. Rev. B 88 054111CrossRefGoogle Scholar
  28. 28.
    Singh Y 2013 Electrical resistivity measurements: A review Int. J. Modern Phys. Conf. Series 22 745Google Scholar
  29. 29.
    Cheng X, Fabbri E, Nachtegaal M, Castelli I E, El Kazzi M, Haumont R, Marzari N and Schmidt T J 2015 Oxygen evolution reaction on La1–xSrxCoO3 perovskites: A combined experimental and theoretical study of their structural, electronic, and electrochemical properties Chem. Mater. 27 7662Google Scholar
  30. 30.
    Pizzini S 2015 Physical chemistry of semiconductor materials and processes (West Sussex, United Kingdom: John Wiley)Google Scholar
  31. 31.
    Asenath-Smith E, Lokuhewa I N, Misture S T and Edwards D D 2010 p-Type thermoelectric properties of the oxygen-deficient perovskite Ca2Fe2O5 in the brownmillerite structure J. Solid State Chem. 183 1670CrossRefGoogle Scholar
  32. 32.
    Andoulsi R, Horchani-Naifer K and Férid M 2013 Electrical conductivity of La1−xCaxFeO3−δ solid solutions Ceram. Int. 39 6527Google Scholar
  33. 33.
    Jin C, Cao X, Zhang L, Zhang C and Yang R 2013 Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction J. Power Sources 241 225Google Scholar
  34. 34.
    May K J, Carlton C E, Stoerzinger K A, Risch M, Suntivich J, Lee Y L, Grimaud A and Shao Horn Y 2012 Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts J. Phys. Chem. Lett. 3 3264CrossRefGoogle Scholar
  35. 35.
    Malkhandi S, Trinh P, Manohar A K, Jayachandrababu K C, Kindler A, Surya Prakash G K and Narayanan S R 2013 Electrocatalytic activity of transition metal oxide-carbon composites for oxygen reduction in alkaline batteries and fuel cells J. Electrochem. Soc. 160 943CrossRefGoogle Scholar
  36. 36.
    Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T and Dai H 2011 Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction Nat. Mater. 10 780Google Scholar
  37. 37.
    Mohamed R, Cheng X, Fabbri E, Levecque P, Kötz R, Conrad O and Schmidt T J 2015 Electrocatalysis of perovskites: The influence of carbon on the oxygen evolution activity J. Electrochem. Soc. 162 579CrossRefGoogle Scholar
  38. 38.
    Fabbri E, Nachtegaal M, Cheng X and Schmidt Thomas J 2015 Superior bifunctional electrocatalytic activity of Ba0.5Sr0.5Co0.8Fe0.2O3−δ/carbon composite electrodes: Insight into the local electronic structure Adv. Energy Mater. 5 1402033Google Scholar
  39. 39.
    Hona R K and Ramezanipour F 2019 Remarkable oxygen-evolution activity of a perovskite oxide from the Ca2−xSrxFe2O6−δ Series Angew. Chem. Int. Ed. 58 2060CrossRefGoogle Scholar
  40. 40.
    Kim J, Yin X, Tsao K C, Fang S and Yang H 2014 Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction J. Am. Chem. Soc. 136 14646CrossRefGoogle Scholar
  41. 41.
    Zhu Y, Zhou W, Chen Z G, Chen Y, Su C, Tadé Moses O and Shao Z 2015 SrNb0.1Co0.7Fe0.2O3−δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution Angew. Chem. Int. Ed. 54 3897Google Scholar
  42. 42.
    Singh A, Roy S, Das C, Samanta D and Maji T K 2018 Metallophthalocyanine-based redox active metal–organic conjugated microporous polymers for OER catalysis Chem. Commun. 54 4465Google Scholar
  43. 43.
    Shinagawa T, Garcia-Esparza A T and Takanabe K 2015 Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion Sci. Rep. 5 13801Google Scholar
  44. 44.
    Pan Y, Chen Y, Li X, Liu Y and Liu C 2015 Nanostructured nickel sulfides: phase evolution, characterization and electrocatalytic properties for the hydrogen evolution reaction RSC Adv. 5 104740CrossRefGoogle Scholar
  45. 45.
    Oh S, Kim H, Kwon Y, Kim M, Cho E and Kwon H 2016 Porous Co–P foam as an efficient bifunctional electrocatalyst for hydrogen and oxygen evolution reactions J. Mater. Chem. A 4 18272CrossRefGoogle Scholar
  46. 46.
    Song F, Hu X 2014 Ultrathin cobalt–manganese layered double hydroxide Is an efficient oxygen evolution catalyst J. Am. Chem. Soc. 136 16481PubMedCrossRefGoogle Scholar
  47. 47.
    Moir J, Soheilnia N, O’Brien P, Jelle A, Grozea C M, Faulkner D, Helander M G and Ozin G A 2013 Enhanced hematite water electrolysis using a 3D antimony-doped tin oxide electrode ACS Nano 7 4261PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang W, Zhang X, Chen L, Dai J, Ding Y, Ji L, Zhao J, Yan M, Yang F, Chang C-R and Guo S 2018 Single-walled carbon nanotube induced optimized electron polarization of rhodium nanocrystals to develop an interface catalyst for highly efficient electrocatalysis ACS Catal. 8 8092Google Scholar
  49. 49.
    Zhu Y, Zhou W, Yu J, Chen Y, Liu M and Shao Z 2016 Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions Chem. Mater. 28 1691Google Scholar
  50. 50.
    Zhu Y, Zhou W, Sunarso J, Zhong Y and Shao Z 2016 Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution Adv. Funct. Mater. 26 5862CrossRefGoogle Scholar
  51. 51.
    Rong X, Parolin J and Kolpak A M 2016 A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution ACS Catal. 6 1153Google Scholar
  52. 52.
    Wang J, Gao Y, Chen D, Liu J, Zhang Z, Shao Z and Ciucci F 2018 Water splitting with an enhanced bifunctional double perovskite ACS Catal. 8 364Google Scholar
  53. 53.
    Ranaweera C K, Zhang C, Bhoyate S, Kahol P K, Ghimire M, Mishra S R, Perez F, Gupta B K and Gupta R K 2017 Flower-shaped cobalt oxide nano-structures as an efficient, flexible and stable electrocatalyst for the oxygen evolution reaction Mater. Chem. Front. 1 1580CrossRefGoogle Scholar
  54. 54.
    Joya K S, Ul Ain Babar N, Gilani S R, Yasmeen F, Sarfaraz M, Ikram S, Colak S G, Ocakoglu K and Ince M 2018 Heterogeneous electrocatalysts for efficient water oxidation derived from metal phthalocyanine Chem. Select 3 11357Google Scholar
  55. 55.
    Lv X, Zhu Y, Jiang H, Yang X, Liu Y, Su Y, Huang J, Yao Y and Li C 2015 Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction Dalton Trans. 44 4148Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of LouisvilleLouisvilleUSA

Personalised recommendations