Advertisement

Journal of Chemical Sciences

, 131:89 | Cite as

Future demands for high field MRI diagnostic

  • Anurag GautamEmail author
  • Pragya Komal
  • Ram Sevak Singh
Regular Article
  • 47 Downloads

Abstract

In the near future there would be a need for a high field MRI contrast agent for the MRI diagnostic due to the several disadvantages of Gd-based complexes, such as short circulation time and decrease in efficiency at high magnetic field i.e., greater than 3 T. The lanthanide-based nanoparticle can be an alternative to these complexes due to a high density of metal ions per unit of contrast agent. The high density of the metal ions will enable the MR signal shortening usually, at lower concentrations compared to chelates that typically are used at micro-molar concentrations. Additionally, the nanoparticles would retain their relaxivity efficiency at high magnetic field greater than 3 T.

Graphical abstract

Keywords

MRI nanoparticles magnetic field relaxivity 

References

  1. 1.
    Alvares R D A, Gautam A, Prosser R S, van Veggel F C J M and Macdonald P M 2017 Shell versus core Dy3+ contributions to NMR water relaxation in sodium lanthanide fluoride core-shell nanoparticles. An investigation using O-17 and H-1 NMR J. Phys. Chem. C 121 17552CrossRefGoogle Scholar
  2. 2.
    Arya S K and Bhansali S 2011 Lung cancer and its early detection using biomarker-based biosensors. Chem. Rev. 111 6783CrossRefGoogle Scholar
  3. 3.
    Bae K H, Kim Y B, Lee Y, Hwang J, Park H and Park T G 2010 Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T 1- and T 2-weighted magnetic resonance imaging Bioconjugate Chem. 21 505CrossRefGoogle Scholar
  4. 4.
    Bokacheva L, Ackerstaff E, LeKaye H C, Zakian K and Koutcher J A 2014 High-field small animal magnetic resonance oncology studies Phys. Med. Biol. 59 R65CrossRefGoogle Scholar
  5. 5.
    Cao C, Wang X, Cai Y, Sun L, Tian L, Wu H, He X, Lei H, Liu W, Chen G, Zhu R and Pan Y 2014 Targeted in vivo imaging of microscopic tumors with ferritin-based nanoprobes across biological barriers Adv. Mater. 26 2566CrossRefGoogle Scholar
  6. 6.
    Caravan P, Ellison J J, McMurry T J and Lauffer R B 1999 Gadolinium(III) chelates as MRI contrast agents:  structure, dynamics, and applications Chem. Rev. 99 2293CrossRefGoogle Scholar
  7. 7.
    Caravan P, Farrar C T, Frullano L and Uppal R 2009 Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents Contrast Media Mol. Imaging 4 89CrossRefGoogle Scholar
  8. 8.
    Chen S, Wang L, Duce S L, Brown S, Lee S, Melzer A, Cuschieri S A and André P 2010 Engineered biocompatible nanoparticles for in vivo imaging applications J. Am. Chem. Soc. 132 15022CrossRefGoogle Scholar
  9. 9.
    Coey J M D 1971 Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites Phys. Rev. Lett. 27 1140CrossRefGoogle Scholar
  10. 10.
    Das G K, Johnson N J J, Cramen J, Blasiak B, Latta P, Tomanek, B and van Veggel F C J M 2012 NaDyF4 Nanoparticles as T2 contrast agents for ultrahigh field magnetic resonance imaging J. Phys. Chem. Lett. 3 524CrossRefGoogle Scholar
  11. 11.
    Debroye E and Parac Vogt T N 2014 Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging Chem. Soc. Rev. 43 8178CrossRefGoogle Scholar
  12. 12.
    Gautam A and Komal P 2018 Probable ideal size of Ln3+-based upconversion nanoparticles for single and multimodal imaging Coord. Chem. Rev. 376 393CrossRefGoogle Scholar
  13. 13.
    Gautam A and van Veggel F C J M 2013 Synthesis of nanoparticles, their biocompatibility, and toxicity behavior for biomedical applications J. Mater. Chem. B 1 5186CrossRefGoogle Scholar
  14. 14.
    Johnson N J J, Oakden W, Stanisz G J, Scott Prosser R and van Veggel F C J M 2011 Size-tunable, ultrasmall NaGdF4 nanoparticles: Insights into their T1 MRI contrast enhancement Chem. Mater. 23 3714CrossRefGoogle Scholar
  15. 15.
    Kim B H, Lee N, Kim H, An K, Park Y I, Choi Y, Shin K, Lee Y, Kwon S G, Na H B, Park J G, Ahn T Y, Kim Y W, Moon W K, Choi S H and Hyeon T 2011 Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T 1 magnetic resonance imaging Contrast Agents J. Am. Chem. Soc. 133 12624CrossRefGoogle Scholar
  16. 16.
    Lee G Y, Qian W P, Wang L, Wang Y A, Staley C A, Satpathy M, Nie S, Mao H and Yang L 2013 Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer ACS Nano 7 2078CrossRefGoogle Scholar
  17. 17.
    Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay W S, Subramani K and Laurent S 2011 Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine Chem. Rev. 111 253CrossRefGoogle Scholar
  18. 18.
    Na H B, Song I C and Hyeon T 2009 Inorganic nanoparticles for MRI contrast agents Adv. Mater. 21 2133CrossRefGoogle Scholar
  19. 19.
    Niu D, Luo X, Li Y, Liu X, Wang X and Shi J 2013 Manganese-loaded dual-mesoporous silica spheres for efficient T1- and T2-weighted dual mode magnetic resonance imaging ACS Appl. Mater. Interfaces 5 9942CrossRefGoogle Scholar
  20. 20.
    Norek M and Peters J A 2011 MRI Contrast agents based on dysprosium or holmium Progr. Nucl. Magn. Reson. Spectrosc. 59 64CrossRefGoogle Scholar
  21. 21.
    Ooi Y, Inui Yamamoto C, Suzuki T, Nakadate H, Nagase Y, Seiyama A, Yoshioka Y and Seki J 2014 In vivo magnetic resonance imaging at 11.7 tesla visualized the effects of neonatal transection of infraorbital nerve upon primary and secondary trigeminal pathways in rats Brain Res. 1579 84CrossRefGoogle Scholar
  22. 22.
    Seo W S, Lee J H, Sun X, Suzuki Y, Mann D, Liu Z, Terashima M, Yang P C, McConnell M V, Nishimura D G and Dai H 2006 FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents Nat. Mater. 5 971CrossRefGoogle Scholar
  23. 23.
    Wu M, Meng Q, Chen Y, Xu P, Zhang S, Li Y, Zhang L, Wang M, Yao H and Shi J 2014 Ultrasmall confined iron oxide nanoparticle MSNs as a pH-responsive theranostic platform Adv. Funct. Mater. 24 4273CrossRefGoogle Scholar
  24. 24.
    Yang H, Zhuang Y, Sun Y, Dai A, Shi X, Wu D, Li F, Hu H and Yang S 2011 Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles Biomaterials 32 4584CrossRefGoogle Scholar
  25. 25.
    Yeh C S, Su C H, Ho W Y, Huang C C, Chang J C, Chien Y H, Hung S T, Liau M C and Ho H Y 2013 Tumor targeting and MR imaging with lipophilic cyanine-mediated near-infrared responsive porous Gd silicate nanoparticles Biomaterials 34 5677CrossRefGoogle Scholar
  26. 26.
    Yoo D, Lee J H, Shin T H and Cheon J 2011 Theranostic magnetic nanoparticles Acc. Chem. Res. 44 863CrossRefGoogle Scholar
  27. 27.
    Zhang X, Blasiak B, Marenco A J, Trudel S, Tomanek B and van Veggel F C J M 2016 Design and regulation of NaHoF4 and NaDyF4 nanoparticles for high-field magnetic resonance imaging Chem. Mater. 28 3060CrossRefGoogle Scholar
  28. 28.
    Zhou Z, Huang D, Bao J, Chen Q, Liu G, Chen Z, Chen X and Gao J A 2012 Synergistically enhanced T 1T 2 dual-modal contrast agent Adv. Mater. 24 6223CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.School of ScienceO. P. Jindal UniversityRaigarhIndia
  2. 2.Department of BiologyBirla Institute of Technology and ScienceHyderabadIndia

Personalised recommendations