Journal of Chemical Sciences

, 131:95 | Cite as

Materials with electronic transitions in the near-infrared

  • Wolfgang KaimEmail author
Regular Article


Concepts have been developed which favor low-energy absorption in the near-infrared (NIR) region. These include metal-metal charge transfer (inter-valence charge transfer) transitions of mixed-valent species, radical ion compounds (anions, cations), and mixtures thereof. Recent examples from ruthenium coordination chemistry are presented in order to illustrate analysis and assignment of such NIR transitions.


Charge transfer mixed valency near-infrared radical complexes Ruthenium compounds 



Support from the Deutsche Forschungsgemeinschaft, EU (COST D35) and Fonds der Chemischen Industrie is gratefully acknowledged. Special thanks are due to Mrs. Angela Winkelmann for her contributions in preparing this article and to Drs. J. Fiedler and S. Záliš (J. Heyrovsky Institute, Prague) for continued cooperation.


  1. 1.
    Bouit P-A, Wetzel G, Berginc G, Loiseaux B, Toupet L, Feneyrou P, Bretonniere Y, Kamada K, Maury O and Andraud C 2007 Near IR Nonlinear Absorbing Chromophores with Optical Limiting Properties at Telecommunication Wavelengths Chem. Mater. 19 5325Google Scholar
  2. 2.
    Wang L V and Wu H-I 2007 Biomedical Optics (Hoboken: Wiley)Google Scholar
  3. 3.
    Horvath H 1993 Atmospheric light absorption – A review Atmos. Environ. A 27 293Google Scholar
  4. 4.
    Ozaki Y, McClure W F and Christy A A 2006 Near-Infrared Spectroscopy in Food Science and Technology (Hoboken: Wiley)Google Scholar
  5. 5.
    Bundgaard E and Krebs F C 2007 Low band gap polymers for organic photovoltaics Sol. Energy Mater. Sol. Cells 91 954Google Scholar
  6. 6.
    Fabian J, Nakazumi H and Matsuoka M 1982 Near-Infrared Absorbing Dyes Chem. Rev. 92 1197Google Scholar
  7. 7.
    Kaim W 2011 Concepts for metal complex chromophors absorbing in the near infrared Coord. Chem. Rev. 255 2503Google Scholar
  8. 8.
    Wang F, Lin T T, He C, Chi H, Tang T and Lai Y-H 2012 Azulene-containing Organic Chromophores with Tunable Near-IR Absorption in the Range of 0.6 to 1.7 mm J. Mater. Chem. 22 10448Google Scholar
  9. 9.
    Mews N M, Berkefeld A, Hörner G and Schubert H 2017 Controlling Near-Infrared Chromophore Electronic Properties through Metal-Ligand Orbital Alignment J. Am. Chem. Soc. 139 2808PubMedGoogle Scholar
  10. 10.
    He H 2014 Near-infrared emitting lanthanide complexes of porphyrin and BODIPY dyes Coord. Chem. Rev. 273–274 87Google Scholar
  11. 11.
    Otto S, Grabolle M, Förster C, Kreitner C, Resch-Genger U and Heinze K 2015 [Cr(ddpd)2]3+: A Molecular, Water-Soluble, Highly NIR-Emissive Ruby Analogue Angew. Chem. Int. Ed. 54 11572Google Scholar
  12. 12.
    Shida T 1988 Electronic absorption spectra of radical ions (Amsterdam: Elsevier)Google Scholar
  13. 13.
    Ehret F, Bubrin M, Záliš S and Kaim W 2015 Metal Chelating N,N’-Bis(4-dimethylaminophenyl)acetamidinyl Radical: A new chromophore for the near infrared Chem. Eur. J. 21 12275PubMedGoogle Scholar
  14. 14.
    Rocha R C, Rein F N, Jude H, Shreve A P, Concepcion J J and Meyer T J 2008 Observation of three intervalence-transfer bands for a Class II-III mixed-valence complex of ruthenium Angew. Chem. Int. Ed. 47 503Google Scholar
  15. 15.
    D’Alessandro D M and Keene F R 2006 Current trends and future challenges in the experimental, theoretical and computational analysis of intervalence charge transfer (IVCT) transitions Chem. Soc. Rev. 35 424PubMedGoogle Scholar
  16. 16.
    Kaim W, Klein A and Glöckle M 2000 Exploration of Mixed-Valence Chemistry: Inventing New Analogues of the Creutz-Taube Ion Acc. Chem. Res. 33 755PubMedGoogle Scholar
  17. 17.
    Glover S D and Kubiak C P 2011 Persistence of the three-state description of mixed valency at the localized-to-delocalized transition J. Am. Chem. Soc. 133 8721PubMedGoogle Scholar
  18. 18.
    Robin M B and Day P 1968 Mixed Valence Chemistry-A Survey and Classification Adv. Inorg. Chem. Radiochem. 10 247Google Scholar
  19. 19.
    Glöckle M, Kaim W, Klein A, Roduner E, Hübner G, Záliš S, van Slageren J, Renz F and Gütlich P 2001 The Stable Diiron(2.5) Complex Ion [(NC)5Fe(μ-tz)Fe(CN)5]5-, tz = 1,2,4,5-Tetrazine, and Its Neighboring Oxidation States Inorg. Chem. 40 2256PubMedGoogle Scholar
  20. 20.
    Creutz C 1983 Mixed valence complexes of d5-d6 metal centers Prog. Inorg. Chem. 30 1Google Scholar
  21. 21.
    Kaim W 2011 Manifestations of Non-innocent Ligand Behavior Inorg. Chem. 50 9752PubMedGoogle Scholar
  22. 22.
    Kaim W 2001 ESR Spectroscopy of Inorganic and Organometallic Radicals in Electron Transfer in Chemistry V Balzani (Ed.) (Weinheim: Wiley-VCH) Vol. 2 p. 976Google Scholar
  23. 23.
    Kaim W and Lahiri G K 2007 Unconventional Mixed-Valent Complexes of Ruthenium and Osmium Angew. Chem. Int. Ed. 46 1778Google Scholar
  24. 24.
    Weil J A and Bolton J R 2007 Electron Paramagnetic Resonance 2nd edn. (Hoboken: Wiley)Google Scholar
  25. 25.
    Autschbach J 2012 Perspective: Relativistic effects J. Chem. Phys. 136 150902PubMedGoogle Scholar
  26. 26.
    Ernst S, Hänel P, Jordanov J, Kaim W, Kasack V and Roth E 1989 Stable Binuclear o- and p-Semiquinone Complexes of [Ru(bpy)2]2+. Radical Ion versus Mixed Valence Dimer Formulation J. Am. Chem. Soc. 111 1733Google Scholar
  27. 27.
    Maji S, Sarkar B, Mobin S M, Fiedler J, Urbanos F A, Jimenez-Aparicio R, Kaim W and Lahiri G K 2008 Valence State Alternatives in Diastereoisomeric Complexes [(acac)2Ru(μ-QL)Ru(acac)2]n (QL2- = 1,4-Dioxido-9,10-anthraquinone, n = +2,+1,0,-1,-2) Inorg. Chem. 47 5204PubMedGoogle Scholar
  28. 28.
    Kamatchi T S, Mondal S, Scherer T, Bubrin M, Natarajan K and Kaim W 2017 Near IR Absorbing Organometallic Diruthenium Complex Intermediates: Evidence for Bridging Anthrasemiquinone Formation and against Mixed Valency Chem. Eur. J. 23 17810PubMedGoogle Scholar
  29. 29.
    Kaim W and Fiedler J 2009 Spectroelectrochemistry: the best of two worlds Chem. Soc. Rev. 38 3373PubMedGoogle Scholar
  30. 30.
    Kaim W 2001 Complexes with 2,2’-azobispyridine and related S-frame bridging ligands containing the azo function Coord. Chem. Rev. 219-221 463Google Scholar
  31. 31.
    Kasack V, Kaim W, Binder H, Jordanov J and Roth E 1995 When is an Odd-Electron Dinuclear Complex a Mixed-Valent Species? Tuning of Ligand-to-Metal Spin Shifts in Diruthenium Complexes of Non-Innocent Dicarbonylhy-drazido Bis-Chelate Ligands Inorg. Chem. 34 1924Google Scholar
  32. 32.
    Jana R, Sarkar B, Bubrin D, Fiedler J and Kaim W 2010 Structure, electrochemistry and spectroscopy of a new diacylhydrazido-bridged diruthenium complex with a strongly near-infrared absorbing RuIIIRuII intermediate Inorg. Chem. Commun. 13 1160Google Scholar
  33. 33.
    Roy S, Sarkar B, Imrich H-G, Fiedler J, Záliš S, Jimenez-Aparicio R, Urbanos F A, Mobin S M, Lahiri G K and Kaim W 2012 Charged but Found Not Guilty: Innocence of the Suspect Bridging Ligands [RO(O)CNNC(O)OR]2- = L2- in [(acac)2Ru(μ-L)Ru(acac)2]n, n = +,0,-,2- Inorg. Chem. 51 9273PubMedGoogle Scholar
  34. 34.
    Mondal S, Schwederski B, Frey W, Fiedler J, Záliš S and Kaim W 2018 At the Borderline between Metal-Metal Mixed Valency and a Radical Bridge Situation: Four Charge States of a Diruthenium Complex with a Redox-active Bis(mer-tridentate) Ligand Inorg. Chem. 57 3983PubMedGoogle Scholar
  35. 35.
    Qi Y, Desjardins P and Wang Z Y 2002 Novel near-infrared active dinuclear ruthenium complex materials: Effects of substituents on optical attenuation J. Opt. A: Pure Appl. Opt. 4 S273Google Scholar
  36. 36.
    Wang Z Y, Zhang J, Wu X, Birau M, Yu G, Yu H, Qi Y, Desjardin P, Meng X, Gao J P, Todd E, Song N, Bai Y, Beaudin A M R and LeClair G 2004 Near-infrared absorbing organic materials Pure Appl. Chem. 76 1435Google Scholar
  37. 37.
    Xun S, LeClair G, Zhang J, Chen X, Gao J P and Wang Z Y 2006 Tuning the Electrical and Optical Properties of Dinuclear Ruthenium Complexes for Near Infrared Optical Sensing Org. Lett. 8 1697PubMedGoogle Scholar
  38. 38.
    Xun S, Zhang J, Li X, Ma D and Wang Z Y 2008 Synthesis and near-infrared luminescent properties of some ruthenium complexes Synth. Met. 158 484Google Scholar
  39. 39.
    LeClair G and Wang Z Y 2009 Optical attenuation at the 1,550-nm wavelength in a reflective mode using electrochromic ruthenium complex film J. Solid State Electrochem. 13 365Google Scholar
  40. 40.
    Sarkar B, Patra S, Fiedler J, Sunoj R B, Janardanan D, Lahiri G K and Kaim W 2008 Mixed-Valent Metals Bridged by a Radical Ligand: Fact or Fiction Based on Structure-Oxidation State Correlations J. Am. Chem. Soc. 130 3532PubMedGoogle Scholar
  41. 41.
    Záliš S, Sarkar B, Duboc C and Kaim W 2009 Evidence for the dimer-of-(mixed-valent dimers) configuration in tetranuclear {(μ4-TCNX)[Ru(NH3)5]4}8+, TCNX = TCNE and TCNQ, from DFT Calculations Chem. Monthly 140 765Google Scholar
  42. 42.
    Ansari M A, Mandal A, Beyer K, Paretzki A, Schwederski B, Kaim W and Lahiri G K 2017 Non-Innocence and mixed valency in tri- and tetranuclear ruthenium complexes of a heteroquinone bridging ligand Dalton Trans. 46 15589PubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Institut für Anorganische ChemieUniversität StuttgartStuttgartGermany

Personalised recommendations