Advertisement

A quantitative study of weak noncovalent interactions in two pyridine isomers containing nitrile and thiophene moieties: a combined X-ray and theoretical investigation

  • Mani Udayakumar
  • Margarita Cerón
  • Paulina Ceballos
  • Perumal Venkatesan
  • M Judith Percino
  • Subbiah ThamotharanEmail author
Regular Article
  • 4 Downloads

Abstract

Single crystals of two pyridine isomers containing cyano and thiophene moieties {systematic names: (Z)-2-(pyridine-2-yl)-3-(thiophen-2-yl)acrylonitrile, \(\hbox {C}_{{12}}\hbox {H}_{{8}}\hbox {N}_{{2}}\hbox {S}\), I and (Z)-2-(pyridine-3-yl)-3-(thiophen-2-yl)acrylonitrile, \(\hbox {C}_{{12}}\hbox {H}_{{8}}\hbox {N}_{{2}}\hbox {S}\), II} were obtained from ethanol-cyclohexane mixture. The thiophene ring was found to be disordered over two orientations (syn and anti) in II. The potential energy surface scan of thiophene ring rotation suggests that the syn conformer is more stable by \(\approx 4 \,\hbox {kcal mol}^{-1}\) than that of the anti-conformer. The optimized structures obtained using the DFT method (M06-2X/cc-pVTZ level of theory) show a high degree of similarity with the experimental structures. A detailed experimental and theoretical analysis on the intra- and intermolecular interactions observed in these structures is reported. The molecules arranged in the crystalline state are completely different in I and II. Intermolecular interactions are qualitatively analyzed using Hirshfeld surface and its associated 2D fingerprint plots. The intermolecular interaction energies of different molecular pairs are calculated using the PIXEL method. Several weak non-covalent interactions such as C–H \(\cdot \cdot \cdot \hbox {N}\), C–H \(\cdot \cdot \cdot \uppi \), C–H \(\cdot \cdot \cdot \hbox {S}\), \(\uppi \cdot \cdot \cdot \uppi \) and \(\hbox {S}\cdot \cdot \cdot \hbox {N}\) contacts play a vital role in the stabilization of crystal structures. These interactions are further explored by the topological analysis of the electron density based on the quantum theory of the atoms-in-molecules approach.

Graphic abstract

Crystal structures of two pyridine isomers of acrylonitrile derivatives are reported. Structures are stabilized by several weak non-covalent interactions such as C–H \(\cdot \cdot \cdot \hbox {N}\), C–H \(\cdot \cdot \cdot \uppi \), C–H \(\cdot \cdot \cdot \hbox {S}\), \(\uppi \cdot \cdot \cdot \uppi \) and \(\hbox {S}\cdot \cdot \cdot \hbox {N}\) contacts in the solid state. Evaluation of these weak non-covalent interactions has been performed by means of the quantum theory of atoms-in-molecules approach (QTAIM).

Keywords

Pyridine nitrile thiophene PIXEL QTAIM MESP 

Notes

Acknowledgements

The authors would like to thank Laboratorio Nacional de Supercoìmputo del Sureste (LNS-BUAP) for the calculus service and the 100184100-VIEP2019 (VIEP-BUAP) and SA/103.5/15/12684 (PRODEP-SEP) projects, as well as Dr. Maxime A. Siegler (Johns Hopkins University) for the assistance with data collection. ST thanks the DST-SERB (SB/YS/LS-19/2014) for financial assistance.

Supplementary material

12039_2019_1636_MOESM1_ESM.pdf (2.2 mb)
Supplementary material 1 (pdf 2269 KB)
12039_2019_1636_MOESM2_ESM.pdf (1.1 mb)
Supplementary material 2 (pdf 1082 KB)

References

  1. 1.
    Desiraju G R 1989 Crystal Engineering: The Design of organic solids Materials science monographs 1\(^{{\rm st}}\) edn. (Oxford, UK: Elsevier Science)Google Scholar
  2. 2.
    Aakeröy C B, Champness N R and Janiak C 2010 Recent advances in crystal engineering CrystEngComm 12 22CrossRefGoogle Scholar
  3. 3.
    Arunan E, Desiraju G R, Klein R A, Sadlej J, Scheiner S, Alkorta I, Clary D C, Crabtree R H, Dannenberg J J, Hobza P and Kjaergaard H G 2011 Definition of the hydrogen bond (IUPAC Recommendations 2011) Pure Appl. Chem. 83 1619CrossRefGoogle Scholar
  4. 4.
    Arunan E, Desiraju G R, Klein R A, Sadlej J, Scheiner S, Alkorta I, Clary D C, Crabtree R H, Dannenberg J J, Hobza P and Kjaergaard, H G 2011 Definition of the hydrogen bond (IUPAC Recommendations 2011) Pure Appl. Chem. 83 1637CrossRefGoogle Scholar
  5. 5.
    Desiraju G R 2011 A bond by any other name Angew. Chem. Int. Ed. 50 52CrossRefGoogle Scholar
  6. 6.
    Desiraju G R and Steiner T 1999 The Weak Hydrogen Bond (Oxford, UK: Oxford University Press)Google Scholar
  7. 7.
    Fleming F F, Yao L, Ravikumar P C, Funk L and Shook B C 2010 Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore J. Med. Chem. 53 7902CrossRefGoogle Scholar
  8. 8.
    Wishart D S, Feunang Y D, Guo A C, Lo E J, Marcu A, Grant J R, Sajed T, Johnson D, Li C, Sayeeda Z and Assempour N 2017 DrugBank 5 0: a major update to the DrugBank database for 2018 Nucleic Acids Res. 46 1074CrossRefGoogle Scholar
  9. 9.
    Baumann M and Baxendale I R 2013 An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles Beilstein J. Org. Chem. 9 2265CrossRefGoogle Scholar
  10. 10.
    Bayram M, De Luca L, Massie M B and Gheorghiade M 2005 Reassessment of dobutamine, dopamine, and milrinone in the management of acute heart failure syndromes Am. J. Cardio. 96 47CrossRefGoogle Scholar
  11. 11.
    Gramec D, Peterlin Mašič L and Sollner Dolenc M 2014 Bioactivation potential of thiophene-containing drugs Chem. Res. Toxicol. 27 1344CrossRefGoogle Scholar
  12. 12.
    Peng Z and Galvin M E 1998 Polymers with high electron affinities for light-emitting diodes Chem. Mater. 10 1785CrossRefGoogle Scholar
  13. 13.
    Percino M J, Chapela V M, Cerón M, Soriano-Moro G, Castro M E and Melendez F J 2013 Fluorescence improvement of pyridylacrylonitrile by dimethylaminophenyl-substitutions: The effect of packing modes of conjugated compounds J. Mol. Struct. 1034 238CrossRefGoogle Scholar
  14. 14.
    Epstein A J, Wang Y, Jessen S W, Blatchford J W, Gebler D D, Lin L B, Gustafson T L, Swager T M and Macdiarmid A G 1997 Pyridine-based conjugated polymers: Photophysical properties and light-emitting devices Macromol. Symp. 116 27CrossRefGoogle Scholar
  15. 15.
    Liu M S, Jiang X, Liu S, Herguth P and Jen A K Y 2002 Effect of cyano substituents on electron affinity and electron-transporting properties of conjugated polymers Macromolecules 35 3532CrossRefGoogle Scholar
  16. 16.
    Wang C, Dong H, Hu W, Liu Y and Zhu D 2011 Semiconducting \(\uppi \)-conjugated systems in field-effect transistors: a material odyssey of organic electronics Chem. Rev. 112 2208CrossRefGoogle Scholar
  17. 17.
    Percino J, Cerón M, Venkatesan P, Ceballos P, Bañuelos A, Rodríguez O, Siegler M A, Robles F, Chapela V M, Soriano-Moro G, Pérez-Gutiérrez E, Bonilla-Cruz J and Thamotharan S 2017 Two Different Emissions of (2 Z)-2-(4-Bromophenyl)-3-[4-(dimethylamino) phenyl] prop-2-enenitrile Due to Crystal Habit and Size: Synthesis, Optical, and Supramolecular Characterization Cryst. Growth Des. 17 1679CrossRefGoogle Scholar
  18. 18.
    Venkatesan P, Cerón M, Thamotharan S, Robles F and Percino M J 2018 Quantitative analysis of weak non-covalent interactions in (Z)-3-(4-halophenyl)-2-(pyridin-2/3/4-yl) acrylonitriles CrystEngComm 20 2681CrossRefGoogle Scholar
  19. 19.
    Percino M, Chapela V, Montiel L F, Pérez-Gutiérrez E and Maldonado J 2010 Spectroscopic characterization of halogen-and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent Chem. Pap. 64 360CrossRefGoogle Scholar
  20. 20.
    Percino M, Chapela V, Pérez-Gutiérrez E, Cerón and Soriano G 2011 Synthesis, optical, and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles Chem. Pap. 65 42Google Scholar
  21. 21.
    Gavezzotti A 2002 Calculation of intermolecular interaction energies by direct numerical integration over electron densities. I. Electrostatic and polarization energies in molecular crystals J. Phys. Chem. B106 4145CrossRefGoogle Scholar
  22. 22.
    Gavezzotti A 2003 Calculation of intermolecular interaction energies by direct numerical integration over electron densities. 2. An improved polarization model and the evaluation of dispersion and repulsion energies J. Phys. Chem. B107 2344CrossRefGoogle Scholar
  23. 23.
    Gavezzotti A 2011 Efficient computer modeling of organic materials. The atom-atom, Coulomb–London–Pauli (AA-CLP) model for intermolecular electrostatic-polarization, dispersion and repulsion energies New J. Chem. 35 1360CrossRefGoogle Scholar
  24. 24.
    Bader R F 1991 A quantum theory of molecular structure and its applications Chem. Rev. 91 893CrossRefGoogle Scholar
  25. 25.
    Spackman M A and Jayatilaka D 2009 Hirshfeld surface analysis CrystEngComm 11 19CrossRefGoogle Scholar
  26. 26.
    Spackman M A and McKinnon J J 2002 Fingerprinting intermolecular interactions in molecular crystals CrystEngComm 4 378CrossRefGoogle Scholar
  27. 27.
    McKinnon J J, Jayatilaka D and Spackman M A 2007 Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces Chem. Comm. 37 3814CrossRefGoogle Scholar
  28. 28.
    Sheldrick G M 2008 A short history of SHELX Acta Cryst. A64 112CrossRefGoogle Scholar
  29. 29.
    Sheldrick G M 2015 Crystal structure refinement with SHELXL Acta Cryst. C71 3Google Scholar
  30. 30.
    Spek A L 2003 Single-crystal structure validation with the program PLATON J. Appl. Cryst. 36 7CrossRefGoogle Scholar
  31. 31.
    Macrae C F, Edgington P R, McCabe P, Pidcock E, Shields G P, Taylor R, Towler M and Streek J V D 2006 Mercury: visualization and analysis of crystal structures J. Appl. Cryst. 39 453CrossRefGoogle Scholar
  32. 32.
    Turner M J, McKinnon J J, Wolff S K, Grimwood D J, Spackman P R, Jayatilaka D and Spackman M A 2017 CrystalExplorer17 University of Western Australia.Google Scholar
  33. 33.
    McKinnon J J, Spackman M A and Mitchell A S 2004 Novel tools for visualizing and exploring intermolecular interactions in molecular crystals Acta Cryst. B60 627CrossRefGoogle Scholar
  34. 34.
    Boys S F and Bernardi F 1970 The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors Mol. Phys. 19 553CrossRefGoogle Scholar
  35. 35.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J. Fox, D J 2013 Gaussian 09, Revision D. 01, Gaussian Inc., Wallingford CTGoogle Scholar
  36. 36.
    Zhao Y and Truhlar D G 2008 The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals Theo. Chem. Acc. 120 215CrossRefGoogle Scholar
  37. 37.
    Grimme S, Antony J, Ehrlich S and Krieg H 2010 A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J. Chem. Phys. 132 154104CrossRefGoogle Scholar
  38. 38.
    Becke A D 1993 Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys. 98 5648CrossRefGoogle Scholar
  39. 39.
    Espinosa E, Molins E and Lecomte C 1998 Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities Chem. Phys. Lett. 285 170CrossRefGoogle Scholar
  40. 40.
    Bulat F A, Toro-Labbé A, Brinck T, Murray J S and Politzer P 2010. Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies J. Mol. Model. 16 1679CrossRefGoogle Scholar
  41. 41.
    Percino M J, Cerón M, Rodríguez O, Soriano-Moro G, Castro M E, Chapela V M, Siegler M A and Pérez-Gutiérrez E 2016 Conformational and Molecular Structures of \(\upalpha \), \(\upbeta \)-Unsaturated Acrylonitrile Derivatives: Photophysical Properties and Their Frontier Orbitals Molecules 21 389CrossRefGoogle Scholar
  42. 42.
    Percino M J, Cerón M, Ceballos P, Soriano-Moro G, Castro M E, Chapela V M, Bonilla-Cruz J, Reyes-Reyes M, López-Sandoval R and Siegler M A 2014 Important role of molecular packing and intermolecular interactions in two polymorphs of (Z)-2-phenyl-3-(4-(pyridin-2-yl) phenyl) acrylonitrile Preparation, structures, and optical properties J. Mol. Struct. 1078 74CrossRefGoogle Scholar
  43. 43.
    Matta C F, Hernández-Trujillo J, Tang T H and Bader R F 2003 Hydrogen–hydrogen bonding: a stabilizing interaction in molecules and crystals Chem. Eur. J. 9 1940CrossRefGoogle Scholar
  44. 44.
    Al-Wahaibi L H, Sujay S, Muthu G G, El-Emam A A, Venkataramanan N S, Al-Omary F A, Ghabbour H A, Percino J and Thamotharan S 2018 Theoretical investigations of two adamantane derivatives: A combined X-ray, DFT, QTAIM analysis and molecular docking J. Mol. Struct. 1159 233CrossRefGoogle Scholar
  45. 45.
    Thamotharan S, Kothandapani J, Ganesan S S, Venkataramanan N S, Kumar S M, Byrappa K, Percino J and Robles F 2018 Quantitative analysis of intermolecular interactions in 2, 2’-((4-bromophenyl) methylene) bis (3-hydroxy-5, 5-dimethylcyclohex-2-en-1-one): insights from crystal structure, PIXEL, Hirshfeld surfaces and QTAIM analysis J. Chem. Sci. 130 20CrossRefGoogle Scholar
  46. 46.
    Udayakumar M, Jagatheeswaran K, Ganesan S S, Venkataramanan N S, Kumar S M, Byrappa K and Thamotharan S 2017 Investigation of 9-(2-hydroxy-4, 4-dimethyl-6-oxocyclohex-1-en-1-yl)-3, 3-dimethyl-2, 3, 4, 9-tetrahydro-1H-xanthen-1-one: Crystal structure, AIM and NBO analysis J. Mol. Struct. 1133 510CrossRefGoogle Scholar
  47. 47.
    Popelier P L 1998 Characterization of a dihydrogen bond on the basis of the electron density J. Phys. Chem. A102 1873CrossRefGoogle Scholar
  48. 48.
    Koch U and Popelier P L 1995 Characterization of CHO hydrogen bonds on the basis of the charge density J. Phys. Chem. 99 9747CrossRefGoogle Scholar
  49. 49.
    Munshi P, Thakur T S, Guru Row T N and Desiraju G R 2006 Five varieties of hydrogen bond in 1-formyl-3-thiosemicarbazide: an electron density study Acta Cryst. B62 118CrossRefGoogle Scholar
  50. 50.
    Munshi P and Guru Row T N 2006 Intra-and intermolecular interactions in small bioactive molecules: cooperative features from experimental and theoretical charge-density analysis Acta Cryst. B62 612CrossRefGoogle Scholar
  51. 51.
    Munshi P, Cameron E, Guru Row T N, Ferrara J D and Cameron T S 2007 Investigation of inter-ion interactions in \(N\),\(N\),\(N\)’,\(N\)’-tetramethylethylenediammonium dithiocyanate via experimental and theoretical charge density studies J. Phys. Chem. A111 7888CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and BiotechnologySASTRA Deemed UniversityThanjavurIndia
  2. 2.Unidad de Polímeros y Electrónica Orgánica, Instituto de CienciasBenemérita Universidad Autónoma de PueblaSan Pedro ZacachimalpaMexico

Personalised recommendations