Advertisement

Transition metal complexes obtained from an ionic liquid-supported Schiff base: synthesis, physicochemical characterization and exploration of antimicrobial activities

  • Biswajit Sinha
  • Malay Bhattacharya
  • Sanjoy SahaEmail author
Regular Article

Abstract

An ionic liquid-supported Schiff base 1-{2-(2-hydroxy-5-chlorobenzylamine) ethyl}-3-methylimidazolium tetrafluoroborate and its Co(II), Ni(II), Cu(II), Mn(III), Fe(III) and Cr(III) complexes were synthesized and characterized by various analytical (elemental analysis, molar conductance and magnetic susceptibility measurements) and spectroscopic (PXRD, SEM, ESI-MS, UV-Visible, FT-IR, \(^{ 1}\hbox {H NMR}\) and \(^{13}\hbox {C-NMR}\)) methods. Based on these spectral data and spectra, tetra coordinated and hexacoordinated geometries were assigned for the synthesized metal complexes. Molar conductance of the complexes showed their (1:2) electrolytic nature. The Schiff base ligand and its complexes were screened for in vitro antimicrobial activities against some naturally available gram positive and gram negative bacteria to assess their inhibition potentials. Maximum inhibition zone was produced by the Cu(II) complex (5a) in plates of Klebsiella pneumoniae while the minimum inhibition zone was produced by in plates of Bacillus cereus.

Graphical abstract

Transition metal complexes synthesized from an ionic liquid-supported Schiff base have been characterized by various spectroscopic and analytical techniques. Based on the experimental data, it was suggested that the metal ions be coordinated by the ligand in 1:2 ratio. The complexes were explored against Gram-positive and Gram-negative bacteria.

Keywords

Ionic liquid Schiff base transition metal complexes antimicrobial studies 

Notes

Acknowledgements

The authors are grateful to the Departmental Special Assistance Scheme under the University Grants Commission, New Delhi (SAP-DRS-III, NO.540/12/DRS/2013) for financial support and SAIF, NEHU, Guwahati, India for \(^{13}\hbox {CNMR}\), \(^{1}\hbox {H NMR}\), ESI-MS and elemental analysis. We are thankful to USIC, NBU, West Bengal, India and Department of Chemistry, Sikkim University, Sikkim, India for SEM and PXRD spectra respectively.

Supplementary material

12039_2019_1593_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (pdf 1282 KB)

References

  1. 1.
    Anastas P T, Kirchhoff M M and Williamson T C 2001 Catalysis as a foundational pillar of green chemistry Appl. Catal. A  221 3CrossRefGoogle Scholar
  2. 2.
    Rogers R D and Seddon K R 2003 Ionic Liquids–Solvents of the Future? Science  302 792CrossRefGoogle Scholar
  3. 3.
    Sheldon R A 2012 Fundamentals of green chemistry: efficiency in reaction design Chem. Soc. Rev.  41 1437CrossRefGoogle Scholar
  4. 4.
    Dupont J, de Souza R F and Suarez P A Z 2002 Ionic liquid (molten salt) phase organometallic catalysis Chem. Rev.  102 3667CrossRefGoogle Scholar
  5. 5.
    Seddon K R 1997 Ionic liquids for clean technology J. Chem. Technol. Biotechnol.  68 351CrossRefGoogle Scholar
  6. 6.
    Welton T 1999 Room-temperature ionic liquids. Solvents for synthesis and catalysis Chem. Rev.  99 2071Google Scholar
  7. 7.
    Gordon C M 2001 New developments in catalysis using ionic liquids Appl. Catal. Gen. A  222 101CrossRefGoogle Scholar
  8. 8.
    Jain N, Kumar A, Chauhan S and Chauhan S M S 2005 Metalloporphyrin and heteropoly acid catalyzed oxidation of C=NOH bonds in an ionic liquid: biomimetic models of nitric oxide synthase Tetrahedron  61 1015Google Scholar
  9. 9.
    Wasserscheid P and Welton T 2008 Ionic Liquid in Synthesis \(2^{{\rm nd}}\) edn. (Weinheim: Wiley-VCH)Google Scholar
  10. 10.
    Zhao H and Malhotra S V 2002 Applications of Ionic Liquids in Organic Synthesis Aldrichim. Acta  35 75CrossRefGoogle Scholar
  11. 11.
    Endres F, Welton T and Wasserscheid P 2003 Ionic Liquids in Synthesis (Weinheim: Wiley-VCH) pp. 289-318Google Scholar
  12. 12.
    Husum T L, Jorgensen C T, Christensen M W and Kirk O 2001 Enzyme catalysed synthesis in ambient temperature ionic liquids Biocatal. Biotransform.  19 331CrossRefGoogle Scholar
  13. 13.
    Kragl U, Eckstein M and Kaftzik N 2002 Enzyme catalysis in ionic liquids Curr. Opin. Biotechnol.  13 565CrossRefGoogle Scholar
  14. 14.
    Park S and Kazlauskas R J 2003 Biocatalysis in ionic liquids—advantages beyond green technology Curr. Opin. Biotechnol.  14 432CrossRefGoogle Scholar
  15. 15.
    Sheldon R A, Lau R M, Sorgedrager M J, van Rantwijk F and Seddon K R 2002 Biocatalysis in ionic liquids Green Chem.  4 147CrossRefGoogle Scholar
  16. 16.
    Van Rantwijk F and Sheldon R A 2007 Biocatalysis in ionic liquids Chem. Rev.  107 2757CrossRefGoogle Scholar
  17. 17.
    Kubisa P 2004 Application of ionic liquids as solvents for polymerization processes Prog. Polymer Sci.  29 3CrossRefGoogle Scholar
  18. 18.
    Carmichael A J and Haddleton D M 2003 Polymer Synthesis in Ionic Liquids (Weinheim: Wiley-VCH) pp. 319-335Google Scholar
  19. 19.
    Zhao H, Xia S and Ma P 2005 Use of ionic liquids as ‘green’ solvents for extractions J. Chem. Technol. Biotechnol.  80 1089CrossRefGoogle Scholar
  20. 20.
    Zhao H 2006 Innovative applications of ionic liquids as “green” engineering liquids Chem. Eng. Commun.  193 1660CrossRefGoogle Scholar
  21. 21.
    Moniruzzaman M and Goto M 2011 Ionic liquids: future solvents and reagents for pharmaceuticals J. Chem. Eng. Jpn.  44 370CrossRefGoogle Scholar
  22. 22.
    Siodmiak T, Marszall M P and Proszowska A 2012 Ionic liquids: a new strategy in pharmaceutical synthesis Mini-Rev. Org. Chem.  9 203CrossRefGoogle Scholar
  23. 23.
    Li J, Peng Y and Song G 2005 Mannich reaction catalyzed by carboxyl-functionalized ionic liquid in aqueous media Catal. Lett.  102 159CrossRefGoogle Scholar
  24. 24.
    Davis Jr. J H, Forrester K J T and Merrigan J 1998 Novel organic ionic liquids (OILs) incorporating cations derived from the antifungal drug miconazole Tetrahedron Lett.  49 8955CrossRefGoogle Scholar
  25. 25.
    Jodry J J and Mikami J K 2004 New chiral imidazolium ionic liquids: 3D-network of hydrogen bonding Tetrahedron Lett.  45 4429CrossRefGoogle Scholar
  26. 26.
    Fei Z, Geldbach T J, Zhao D and Dyson P J 2006 From dysfunction to bis-function: on the design and applications of functionalised ionic liquids J. Eur. Chem.  12 2122CrossRefGoogle Scholar
  27. 27.
    Lee S 2006 Functionalized imidazolium salts for task-specific ionic liquids and their applications Chem. Commun. 1049Google Scholar
  28. 28.
    Kwiatkowski E and Kwiatkowski M 1986 A novel unsymmetrical quadridentate ligand 1-(\(2^\prime \)-aminophenyl)-6-methyl-2,5-diazanona-l,6-diene-8-one and its complexes with copper(II), nickel(II) and palladium(II) Inorg. Chim. Acta  117 145CrossRefGoogle Scholar
  29. 29.
    Holm R H, Everett G W Jr and Chakravorty A 1966 Metal complexes of Schiff bases and \(\upbeta \)-ketoamines Inorg. Chem.  7 83Google Scholar
  30. 30.
    Daneshvar N, Entezami A A, Khandar A A and Saghatforoush L A 2003 Synthesis and characterization of copper(II) complexes with dissymmetric tetradentate Schiff base ligands derived from aminothioether pyridine, Crystal structures of \([\text{ Cu(pytIsal) }]\text{ ClO }_{4}\cdot 0.5\text{ CH }_{3}\text{ OH }\) and \([\text{ Cu(pytAzosal) }]\text{ ClO }_{4}\) Polyhedron  22 1437CrossRefGoogle Scholar
  31. 31.
    Boghaei D M and Mohebi S 2002 Non-symmetrical tetradentate vanadyl Schiff base complexes derived from 1,2-phenylene diamine and 1,3-naphthalene diamine as catalysts for the oxidation of cyclohexene Tetrahedron  58 5357CrossRefGoogle Scholar
  32. 32.
    Song G, Cai Y and Peng Y 2005 Amino-functionalized ionic liquid as a nucleophilic scavenger in solution phase combinatorial synthesis J. Comb. Chem.  7 561CrossRefGoogle Scholar
  33. 33.
    Su P W, Yang C H, Yang J F, Su P Y and Chuang L Y 2015 Antibacterial activities and antibacterial mechanism of polygonum cuspidatum extracts against nosocomial drug-resistant pathogens Molecules  20 11119CrossRefGoogle Scholar
  34. 34.
    Yıldız M, Kılıc Z and Hökelek T 1998 Intramolecular hydrogen bonding and tautomerism in Schiff bases, Structure of 1,8-di[N-2-oxyphenyl-salicylidene]-3,6-dioxaoctane J. Mol. Struct.  441 1CrossRefGoogle Scholar
  35. 35.
    Yeap G -Y, Ha S -T, Ishizawa N, Suda K, Boey P –L and Mahmood W A K 2003 Synthesis, crystal structure and spectroscopic study of parasubstituted 2-hydroxy-3-methoxybenzalideneanilines J. Mol. Struct.  658 87CrossRefGoogle Scholar
  36. 36.
    Abdel-Latif S A, Hassib H B and Issa Y M 2007 Studies on some salicylaldehyde Schiff base derivatives and their complexes with Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II) Spectrochim. Acta Part.  67 950CrossRefGoogle Scholar
  37. 37.
    Wang J, Pei Y, Zhao Y and Hu Z 2005 Recovery of amino acids by imidazolium based ionic liquids from aqueous media Green Chem. 196Google Scholar
  38. 38.
    Han D and Row K H 2010 Recent application of ionic liquids in separation technology Molecules  15 2405CrossRefGoogle Scholar
  39. 39.
    Kohawole G A and Patel K S 1981 The stereochemistry of oxovanadium(IV) complexes derived from salicylaldehyde and polymethylenediamines J. Chem. Soc. Dalton Trans.  6 1241CrossRefGoogle Scholar
  40. 40.
    Mahmoud M A, Zaitone S A, Ammar A M and Sallam S A 2016 Synthesis, structure and antidiabetic activity of chromium(III) complexes of metformin Schiff-bases J. Mol. Struct.  1108 60CrossRefGoogle Scholar
  41. 41.
    Adams D M 1967 Metal-Ligand and Related Vibrations: A Critical Survey of the Infrared and Raman Spectra of Metallic and Organometallic Compounds (London: Edward Arnold Publishers)Google Scholar
  42. 42.
    Adly O M I, Taha A and Fahmy S A 2013 Synthesis, spectral characterization, molecular modeling and antimicrobial activity of new potentially \(\text{ N }_{2}\text{ O }_{2}\) Schiff base complexes J. Mol. Struct.  1054 239CrossRefGoogle Scholar
  43. 43.
    Kar N K, Singh M K and Lal R A 2012 Synthesis and spectral studies on heterobimetallic complexes of manganese and ruthenium derived from bis[N-(2-hydroxynaphthalen-1-yl)methylene]oxaloyldihydrazide Arabian J. Chem.  5 67CrossRefGoogle Scholar
  44. 44.
    Li B, Li Y Q, Zheng W J and Zhou M Y 2009 Synthesis of ionic liquid supported Schiff bases Arkivoc.  11 165Google Scholar
  45. 45.
    Silverstein R M 2005 Spectrometric Identification of Organic Compounds  \(7^{{\rm th}}\) edn. (Hoboken: John Wiley & Sons)Google Scholar
  46. 46.
    Peral F and Gallego E 1997 Self-association of imidazole and its methyl derivatives in aqueous solution: a study by ultraviolet spectroscopy J. Mol. Struct.  415 187CrossRefGoogle Scholar
  47. 47.
    Shakir M, Nasam O S M, Mohamed A K and Varkey S P 1996 Transition metal complexes of 13–14-membered tetraazamacrocycles: synthesis and characterization Polyhedron  15 1283CrossRefGoogle Scholar
  48. 48.
    Chem L S and Cummings S C 1978 Synthesis and characterization of cobalt(II) and some nickel(II) complexes with N,N’-ethylenebis(p-X-benzoylacetone iminato) and N,N’-ethylenebis(p-X-benzoylmonothioacetone iminato) ligands Inorg. Chem.  17 2358CrossRefGoogle Scholar
  49. 49.
    Del Paggio A A and McMillin D R 1983 Substituent effects and the photoluminescence of Cu(PPh\(_3\))\(_2\)(NN)\(_+\) systems Inorg. Chem.  22 691CrossRefGoogle Scholar
  50. 50.
    Natarajan C, Tharmaraj P and Murugesan R 1992 In situ synthesis and spectroscopic studies of copper(II) and nickel(II) complexes of 1-hydroxy-2-naphthylstyrylketoneimines J. Coord. Chem.  26 205CrossRefGoogle Scholar
  51. 51.
    Dehghanpour S, Bouslimani N, Welter R and Mojahed F 2007 Synthesis, spectral characterization, properties and structures of copper(I) complexes containing novel bidentate iminopyridine ligands Polyhedron  26 154CrossRefGoogle Scholar
  52. 52.
    Lever A B P 1984 Inorganic Electronic Spectroscopy \(2^{{\rm nd}}\) edn. (Amsterdam: Elsevier)Google Scholar
  53. 53.
    Ray S, Konar S, Jana A, Das K, Dhara A, Chatterjee S and Kar S K 2014 Syntheses, crystal structure, spectroscopic and photoluminescence studies of mononuclear copper(II), manganese(II), cadmium(II), and a 1D polymeric Cu(II) complexes with a pyrimidine derived Schiff base ligand J. Mol. Struct.  1058 213CrossRefGoogle Scholar
  54. 54.
    Frunza L, Zgura I, Dittmar A and Fricke R 2005 Embedding Jacobsen manganese(III) salen complex into nanoporous molecular sieves: spectroscopic characterisation of host–guest interactions Adv. Mater.  7 2141Google Scholar
  55. 55.
    Kulkarni A D, Patil S A and Badami P S 2009 Electrochemical properties of some transition metal complexes: synthesis, characterization and in-vitro antimicrobial studies of Co(II), Ni(II), Cu(II), Mn(II) and Fe(III) complexes Int. J. Electrochem. Sci. 4 717Google Scholar
  56. 56.
    Dey K and Chakraborty K 2000 Synthesis and characterization of some chromium(III) complexes with N, S, O–donor thiohydrazones Indian J. Chem. 39 1140Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Biswajit Sinha
    • 1
    • 3
  • Malay Bhattacharya
    • 2
  • Sanjoy Saha
    • 1
    • 3
    Email author
  1. 1.Department of ChemistryUniversity of North BengalDarjeelingIndia
  2. 2.Department of Tea ScienceUniversity of North BengalDarjeelingIndia
  3. 3.Department of ChemistryKalimpong CollegeKalimpongIndia

Personalised recommendations