Journal of Chemical Sciences

, 131:15 | Cite as

Quantum chemical studies of structures and spin Hamiltonian parameters of iron transferrin using isolated and embedded clusters models

  • Lokpati Mishra
  • Mahesh SundararajanEmail author
Regular Article



Density functional theory (DFT) based calculations using large cluster models are used to elucidate the ground state electronic structure of iron bound transferrin. Explicit incorporation of second coordination amino acid residues and crystallographic water molecules anchors the active site. Our calculations clearly suggest that tyrosine amino acid (Tyr188) residue is bound to iron when the structures are optimized within the continuum solvation model. However, in the gas phase optimized structure, we note that Tyr188 is unbound to Fe (by more than 3 Å). The Mössbauer isomer shift \((\delta )\) and quadrupolar splitting \((\Delta \hbox {E}_{\mathrm{q}})\) of iron transferrin are in line with the experimental data only when Tyr188 is bound to Fe(III). Further, the computed oxygen hyperfine coupling constant value is very large (\(-14.5\) MHz) when bound to iron which can be verified through \(^{17}\hbox {O}\) NMR experiments. We propose that Tyr188 is strongly bound to Fe(III) at physiological pH, which needs to be protonated (acidic pH) to weaken this bond, thus the metal release pathway can be possible only in acidic conditions.

Graphical Abstract

Theoretical spectroscopic based calculations reveal that Tyr188 is bound to iron in transferrin at physiological pH.


Transferrin electronic structure DFT amino acid modelling 



Lokpati Mishra acknowledges the continuous encouragement and guidance by Dr. I. S. Singh & Dr. P. D. Sawant, IDS, RSSD and Dr. K.S. Pradeepkumar, Head, RSSD, & Associate Director, HS&EG, BARC. MS thank aggra systems for computational facilities.

Supplementary material

12039_2019_1591_MOESM1_ESM.pdf (628 kb)
Supplementary material 1 (pdf 628 KB)


  1. 1.
    Sun H, Li H and Sadler P J 1999 Transferrin as a Metal Ion Mediator Chem. Rev. 99 2817CrossRefGoogle Scholar
  2. 2.
    Cook J D, Skikne B S and Baynes R D 1993 Serum Transferrin Receptor Annu. Rev. Med. 44 63CrossRefGoogle Scholar
  3. 3.
    Crichton R R and Charloteaux-Wauters M 1987 Iron transport and storage Eur. J. Biochem. 164 485CrossRefGoogle Scholar
  4. 4.
    Mason A B, Halbrooks P J, James N G, Connolly S A, Larouche J R, Smith V C, MacGillivray R T A and Chasteen N D 2005 Mutational Analysis of C-Lobe Ligands of Human Serum Transferrin: Insights into the Mechanism of Iron Release Biochemistry 44 8013CrossRefGoogle Scholar
  5. 5.
    MacGillivray R T A, Moore S A, Chen J, Anderson B F, Baker H, Luo Y, Bewley M, Smith C A, Murphy M E P, Wang Y et al. 1998 Two High-Resolution Crystal Structures of the Recombinant N-Lobe of Human Transferrin Reveal a Structural Change Implicated in Iron Release Biochemistry 37 7919CrossRefGoogle Scholar
  6. 6.
    Princiotto J V and Zapolski E J 1975 Difference between the two iron-binding sites of transferrin Nature 255 87CrossRefGoogle Scholar
  7. 7.
    El Hage Chahine J-M, Hémadi M and Ha-Duong N-T 2012 Uptake and release of metal ions by transferrin and interaction with receptor 1 Biochim. Biophys. Acta 1820 334CrossRefGoogle Scholar
  8. 8.
    Hémadi M, Ha-Duong N-T and El Hage Chahine J-M 2011 Can Uranium Be Transported by the Iron-Acquisition Pathway? Ur Uptake by Transferrin J. Phys. Chem. B 115 4206CrossRefGoogle Scholar
  9. 9.
    Jeanson A, Ferrand M, Funke H, Hennig C, Moisy P, Solari P L, Vidaud C and Den Auwer C 2010 The Role of Transferrin in Actinide(IV) Uptake: Comparison with Iron(III) Chem. Eur. J. 16 1378CrossRefGoogle Scholar
  10. 10.
    Benavides-Garcia M G and Balasubramanian K 2009 Structural Insights into the Binding of Uranyl with Human Serum Protein Apotransferrin Structure and Spectra of Protein-Uranyl Interactions Chem. Res. Toxicol. 22 1613CrossRefGoogle Scholar
  11. 11.
    Vidaud C, Gourion-Arsiquaud S, Rollin-Genetet F, Torne-Celer C, Plantevin S, Pible O, Berthomieu C and Quéméneur E 2007 Structural Consequences of Binding of \(\text{ UO }_{2}^{2+}\) to Apotransferrin: Can This Protein Account for Entry of Uranium into Human Cells? Biochemistry 46 2215CrossRefGoogle Scholar
  12. 12.
    Kay C W M, Mkami H, Cammack R and Evans R W 2007 Pulsed ELDOR Determination of the Intramolecular Distance between the Metal Binding Sites in Dicupric Human Serum Transferrin and Lactoferrin J. Am. Chem. Soc. 129 4868CrossRefGoogle Scholar
  13. 13.
    Tinoco A D and Valentine A M 2005 Ti(IV) Binds to Human Serum Transferrin More Tightly Than Does Fe(III) J. Am. Chem. Soc. 127 11218CrossRefGoogle Scholar
  14. 14.
    Zak O and Aisen P 1988 Spectroscopic and thermodynamic studies on the binding of gadolinium(III) to human serum transferrin Biochemistry 27 1075CrossRefGoogle Scholar
  15. 15.
    Gaber B P, Miskowski V and Spiro T G 1974 Resonance Raman scattering from iron(III)- and copper(II)-transferrin and an iron(III) model compound. Spectroscopic interpretation of the transferrin binding site J. Am. Chem. Soc. 96 6868CrossRefGoogle Scholar
  16. 16.
    Aisen P, Aasa R and Redfield A G 1969 The Chromium, Manganese, and Cobalt Complexes of Transferrin J. Biol. Chem. 244 4628PubMedGoogle Scholar
  17. 17.
    Sauge-Merle S, Lemaire D, Evans R W, Berthomieu C and Aupiais J 2017 Revisiting binding of plutonium to transferrin by CE-ICP-MS Dalton Trans. 46 1389CrossRefGoogle Scholar
  18. 18.
    Abergel R J and Ansoborlo E 2016 Curious curium Nat. Chem. 8 516CrossRefGoogle Scholar
  19. 19.
    Bauer N, Frohlich D R and Panak P J 2014 Interaction of Cm(iii) and Am(iii) with human serum transferrin studied by time-resolved laser fluorescence and EXAFS spectroscopy Dalton Trans. 43 6689CrossRefGoogle Scholar
  20. 20.
    Bauer N, Smith V C, MacGillivray R T A and Panak P J 2015 Complexation of Cm(iii) with the recombinant N-lobe of human serum transferrin studied by time-resolved laser fluorescence spectroscopy (TRLFS) Dalton Trans. 44 1850CrossRefGoogle Scholar
  21. 21.
    Steere A N, Miller B F, Roberts S E, Byrne S L, Chasteen N D, Smith V C, MacGillivray R T A and Mason A B 2012 Ionic Residues of Human Serum Transferrin Affect Binding to the Transferrin Receptor and Iron Release Biochemistry 51 686CrossRefGoogle Scholar
  22. 22.
    Borisenko G G, Kagan V E, Hsia C J C and Schor N F 2000 Interaction between 6-Hydroxydopamine and Transferrin: “Let My Iron Go” Biochemistry 39 3392CrossRefGoogle Scholar
  23. 23.
    Mathies G, Gast P, Chasteen N D, Luck A N, Mason A B and Groenen E J J 2015 Exploring the Fe(III) binding sites of human serum transferrin with EPR at 275 GHz J. Biol. Inorg. Chem. 20 487CrossRefGoogle Scholar
  24. 24.
    Gaffney B J 2009 EPR of Mononuclear Non-Heme Iron Proteins BT - High Resolution EPR: Applications to Metalloenzymes and Metals in Medicine (New York: Springer New York)Google Scholar
  25. 25.
    Seidel A, Bill E, Haggstrom L, Nordblad P and Kilar F 1994 Complementary Mössbauer and EPR Studies of Iron(III) in Diferric Human Serum Transferrin with Oxalate or Bicarbonate as Synergistic Anions Arch. Biochem. Biophys. 308 52CrossRefGoogle Scholar
  26. 26.
    Doctor K S, Gaffney B J, Alvarez G and Silverstone H J 1993 EPR spectroscopy of interdoublet transitions in high-spin iron: applications to transferrin oxalate J. Phys. Chem. 97 3028CrossRefGoogle Scholar
  27. 27.
    Rottman G A, Doi K, Zak O, Aasa R and Aisen P 1989 Hyperfine interactions of iron-57 in human transferrin: an ENDOR spectroscopic study J. Am. Chem. Soc. 111 8613CrossRefGoogle Scholar
  28. 28.
    Tsang C P, Bogner L and Boyle A J F 1976 Further Mössbauer study of iron in human transferrin J. Chem. Phys. 65 4584CrossRefGoogle Scholar
  29. 29.
    Tsang C P, Boyle A J F and Morgan E H 1973 Mössbauer spectroscopy of iron in human and rabbit transferrin Biochim. Biophys. Acta Protein Struct. 328 84CrossRefGoogle Scholar
  30. 30.
    Spartalian K and Oosterhuis W T 1973 Mössbauer effect studies of transferrin J. Chem. Phys. 59 617CrossRefGoogle Scholar
  31. 31.
    Mujika J I, Escribano B, Akhmatskaya E, Ugalde J M and Lopez X 2012 Molecular Dynamics Simulations of Iron- and Aluminum-Loaded Serum Transferrin: Protonation of Tyr188 Is Necessary To Prompt Metal Release Biochemistry 51 7017CrossRefGoogle Scholar
  32. 32.
    Rinaldo D and Field M J 2004 A Density Functional Theory Study of the Iron-Binding Site of Human Serum Transferrin Aust. J. Chem. 57 1219CrossRefGoogle Scholar
  33. 33.
    Rinaldo D and Field M J 2003 A Computational Study of the Open and Closed Forms of the N-Lobe Human Serum Transferrin Apoprotein Biophys. J. 85 3485CrossRefGoogle Scholar
  34. 34.
    Kumar R and Mauk A G 2012 Protonation and Anion Binding Control the Kinetics of Iron Release from Human Transferrin J. Phys. Chem. B 116 3795CrossRefGoogle Scholar
  35. 35.
    Gaffney B J, Eaton G R and Eaton S S 1998 Electron Spin Relaxation Rates for High-Spin Fe(III) in Iron Transferrin Carbonate and Iron Transferrin Oxalate J. Phys. Chem. B 102 5536CrossRefGoogle Scholar
  36. 36.
    Eaton S S, Dubach J, Eaton G R, Thurman G and Ambruso D R 1990 Electron spin echo envelope modulation evidence for carbonate binding to iron(III) and copper(II) transferrin and lactoferrin J. Biol. Chem. 265 7138PubMedGoogle Scholar
  37. 37.
    Zweier J L 1978 An electron paramagnetic resonance study of single site copper complexes of transferrin J. Biol. Chem. 253 7616PubMedGoogle Scholar
  38. 38.
    Aasa R and Aisen P 1968 An Electron Paramagnetic Resonance Study of the Iron and Copper Complexes of Transferrin J. Biol. Chem. 243 2399PubMedGoogle Scholar
  39. 39.
    Sundararajan M and Neese F 2015 Distal Histidine Modulates the Unusual O-Binding of Nitrite to Myoglobin: Evidence from the Quantum Chemical Analysis of EPR Parameters Inorg. Chem. Google Scholar
  40. 40.
    Sundararajan M and Neese F 2012 Detailed QM/MM study of the Electron Paramagnetic Resonance Parameters of Nitrosyl Myoglobin J. Chem. Theory Comput. 8 563CrossRefGoogle Scholar
  41. 41.
    Lancaster K M, Zaballa M, Sproules S, Sundararajan M, DeBeer S, Richards J H, Vila A J, Neese F and Gray H B 2012 Outer-Sphere Contributions to the Electronic Structure of Type Zero Copper Proteins J. Am. Chem. Soc. 134 8241CrossRefGoogle Scholar
  42. 42.
    Periyasamy G, Sundararajan M, Hillier I H, Burton N A and McDouall J J W 2007 The binding of nitric oxide at the Cu(i) site of copper nitrite reductase and of inorganic models: DFT calculations of the energetics and EPR parameters of side-on and end-on structures Phys. Chem. Chem. Phys. 9 2498CrossRefGoogle Scholar
  43. 43.
    Smith C A, Anderson B F, Baker H M and Baker E N 1992 Metal substitution in transferrins: the crystal structure of human copper-lactoferrin at 2.1ANG resolution Biochemistry 31 4527CrossRefGoogle Scholar
  44. 44.
    Siegbahn P E M and Blomberg M R A 2000 Transition-Metal Systems in Biochemistry Studied by High-Accuracy Quantum Chemical Methods Chem. Rev. 100 421CrossRefGoogle Scholar
  45. 45.
    Siegbahn P E M and Borowski T 2006 Modeling Enzymatic Reactions Involving Transition Metals Acc. Chem. Res. 39 729CrossRefGoogle Scholar
  46. 46.
    Siegbahn P E M and Himo F 2011 Siegbahn Per E M and Himo F 2011 The quantum chemical cluster approach for modeling enzyme reactions WIREs Comput. Mol. Sci. 1 323CrossRefGoogle Scholar
  47. 47.
    Becke A D 1988 Density-functional exchange-energy approximation with correct asymptotic behavior Phys. Rev. A 38 3098CrossRefGoogle Scholar
  48. 48.
    Perdew J P 1986 Density-functional approximation for the correlation energy of the inhomogeneous electron gas Phys. Rev. B 33 8822CrossRefGoogle Scholar
  49. 49.
    Schäfer A, Horn H and Ahlrichs R 1992 Fully optimized contracted Gaussian basis sets for atoms Li to Kr J. Chem. Phys. 97 2571CrossRefGoogle Scholar
  50. 50.
    Schäfer A, Huber C and Ahlrichs R 1994 Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr J. Chem. Phys. 100 5829CrossRefGoogle Scholar
  51. 51.
    R. Ahlrichs e a. TURBOMOLE V6.0 2009, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from
  52. 52.
    Lee C, Yang W and Parr R G 1988 Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B 37 785CrossRefGoogle Scholar
  53. 53.
    Becke A D 1993 Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys. 98 5648CrossRefGoogle Scholar
  54. 54.
    Neese F 2002 Prediction and interpretation of the 57Fe isomer shift in Mössbauer spectra by density functional theory Inorg. Chim. Acta 337 181CrossRefGoogle Scholar
  55. 55.
    Sinnecker S, Slep L D, Bill E and Neese F 2005 Performance of Nonrelativistic and Quasi-Relativistic Hybrid DFT for the Prediction of Electric and Magnetic Hyperfine Parameters in \(^{57}{\rm Fe}\) Mössbauer Spectra Inorg. Chem. 44 2245CrossRefGoogle Scholar
  56. 56.
    Römelt M, Ye S and Neese F 2009 Calibration of Modern Density Functional Theory Methods for the Prediction of \(^{57}{\rm Fe}\) Mössbauer Isomer Shifts: Meta-GGA and Double-Hybrid Functionals Inorg. Chem. 48 784CrossRefGoogle Scholar
  57. 57.
    Froncisz W and Aisen P 1982 The EPR spectra of copper transferrin complexes at 2–4 GHZ Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzymol. 700 55CrossRefGoogle Scholar
  58. 58.
    Sinnecker S and Neese F 2006 QM/MM calculations with DFT for taking into account protein effects on the EPR and optical spectra of metalloproteins. Plastocyanin as a case study J. Comput. Chem. 27 1463Google Scholar
  59. 59.
    Astashkin A V, Neese F, Raitsimring A M, Cooney J J A, Bultman E and Enemark J H 2005 Pulsed EPR Investigations of Systems Modeling Molybdenum Enzymes: Hyperfine and Quadrupole Parameters of \({\rm Oxo}-^{17}{\rm O}\) in \([{\rm Mo}^{17}{\rm O}({\rm SPh})_{4}]^{-}\) J. Am. Chem. Soc. 127 16713CrossRefGoogle Scholar
  60. 60.
    Cox N, Pantazis D A, Neese F and Lubitz W 2013 Biological Water Oxidation Acc. Chem. Res. 46 1588CrossRefGoogle Scholar
  61. 61.
    Cox N, Retegan M, Neese F, Pantazis D A, Boussac A and Lubitz W 2014 Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation Science 345 804CrossRefGoogle Scholar
  62. 62.
    Lohmiller T, Krewald V, Navarro M P, Retegan M, Rapatskiy L, Nowaczyk M M, Boussac A, Neese F, Lubitz W, Pantazis D A and Cox N 2014 Structure, ligands and substrate coordination of the oxygen-evolving complex of photosystem II in the S2 state: a combined EPR and DFT study Phys. Chem. Chem. Phys. 16 11877CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Radiation Safety and Systems DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia
  3. 3.Theoretical Chemistry SectionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations