Advertisement

Journal of Chemical Sciences

, 131:14 | Cite as

An organometallic ruthenium nanocluster with conjugated aromatic ligand skeleton for explosive sensing

  • Pranav Dave
  • Bhavesh Agrawal
  • Jaydev Thakarda
  • Sagar Bhowmik
  • Prasenjit MaityEmail author
Regular Article
  • 39 Downloads

Abstract

Abstract

9-Ethynylphenanthrene (EPT) bound to highly monodispersed Ruthenium (Ru) nanocluster (Ru:EPT) with mean diameter of \(1.5\pm 0.2\,\hbox {nm}\) and mol wt. of \({\sim }\)8600 Da was synthesized via a facile and high yield biphasic ligand exchange protocol using similar sized ethylene glycol (EG)-stabilized Ru clusters (Ru:EG) as precursor. The synthesized organometallic nanocluster was meticulously analyzed to understand its size distribution, oxidation state, crystallinity, optical and luminescence behavior and metal–ligand interfacial structure. Contrary to the extensive quenching of ligand emission by metalcore as usually observed, the ruthenium core here acts as a conductor, which conjugates surface ligands with strong emission property courtesy to an unusual vinylidene-binding motif. Thus, the synthesized nanocluster shows good luminescence property (\(\upphi = \,{\sim }\, 7\%\)) originated from the ligand skeleton and the spherical metal core restricts lateral overlap of phenanthrene moiety to cause any excimer emission. This nanocluster showed high sensitivity for solution phase detection of nitroaromatic explosives through luminescence quenching method (\(\hbox {K}_{\mathrm{SV}}\) up to \(4.98 \times 10^{4}\,\hbox {M}^{-1})\) and mimic the mechanism like conjugated organic polymer. We propose that dynamic \(\uppi -\uppi \) interaction between Ru bound phenanthrene moiety and nitroaromatic compounds followed by photoinduced electron transfer (PET), as well as Förster Resonance Energy Transfer (FRET), are the possible mechanisms behind this luminescence quenching.

Graphical abstract

SYNOPSIS An organometallic ruthenium nanocluster with \(\sim 8.6 \hbox { kDa mol. wt. }\) was synthesized, where aromatic phenanthrene ligands were inter-molecularly conjugated through Ru core. The Ru nanocluster showed excellent sensing performance for detection of nitroaromatic explosive molecules through luminescence quenching strategy.

Keywords

Nanocluster Organometallic Ruthenium Explosive sensing Photoluminescence 

Notes

Acknowledgements

Financial assistance from Council of Scientific and Industrial Research (CSIR), New Delhi, India (Project no. 01(2873)/17/EMR-II) is gratefully acknowledged.

Supplementary material

12039_2018_1589_MOESM1_ESM.pdf (130 kb)
Supplementary material 1 (pdf 129 KB)

References

  1. 1.
    Schmid G, Bäumle M, Geerkens M, Heim I, Osemann C and Sawitowski T 1999 Current and future applications of nanoclusters Chem. Soc. Rev. 28 179CrossRefGoogle Scholar
  2. 2.
    Shang L, Dong S and Nienhaus G U 2011 Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications Nano Today 6 401CrossRefGoogle Scholar
  3. 3.
    Maity P, Xie S, Yamauchi M and Tsukuda T 2012 Stabilized gold clusters: From isolation toward controlled synthesis Nanoscale 4 4027PubMedCrossRefGoogle Scholar
  4. 4.
    Jin R, Eahb S K and Peic Y 2012 Quantum-sized metal nanoclusters Nanoscale 4 4026PubMedCrossRefGoogle Scholar
  5. 5.
    Mirkhalaf F, Paprotny J and Schiffrin D J 2006 Synthesis of metal nanoparticles stabilized by metal-carbon bonds J. Am. Chem. Soc. 128 7400PubMedCrossRefGoogle Scholar
  6. 6.
    Kang X, Zuckerman N B, Konopelski J P and Chen S 2010 Alkyne-stabilized ruthenium nanoparticles: Manipulation of intraparticle charge delocalization by nanoparticle charge states Angew. Chem. Int. Ed. 49 9496CrossRefGoogle Scholar
  7. 7.
    Kang X, Zuckerman N B, Konopelski J P and Chen S 2012 Alkyne-functionalized ruthenium nanoparticles: Ruthenium–vinylidene bonds at the metal–ligand interface J. Am. Chem. Soc. 134 1412PubMedCrossRefGoogle Scholar
  8. 8.
    Maity P, Tsunoyama H, Yamauchi M, Xie S and Tsukuda T 2011 Organogold clusters protected by phenylacetylene J. Am. Chem. Soc. 133 20123PubMedCrossRefGoogle Scholar
  9. 9.
    Maity P, Wakabayashi T, Ichikuni N, Tsunoyama H, Xie S, Yamauchi M and Tsukuda T 2012 Selective synthesis of organogold magic clusters \(\text{ Au }_{{54}}(\text{ C }\Xi \text{ CPh })_{26}\) Chem. Commun. 48 6085Google Scholar
  10. 10.
    Maity P, Takano S, Yamazoe S, Wakabayashi T and Tsukuda T 2013 Binding motif of terminal alkynes on gold clusters J. Am. Chem. Soc. 135 9450PubMedCrossRefGoogle Scholar
  11. 11.
    Srivastav A K, Agrawal B, Swami B, Agrawal Y K and Maity P 2107 Ligand exchange synthesis of organometallic Rh nanoparticles and application in explosive sensing J. Nanopart. Res. 19 216CrossRefGoogle Scholar
  12. 12.
    Yamamoto H, Maity P, Takahata R, Yamazoe S, Koyasu K, Kurashige W, Negishi Y and Tsukuda T 2017 Monodisperse iridium clusters protected by phenylacetylene: Implication for size-dependent evolution of binding sites J. Phys. Chem. C 121 10936CrossRefGoogle Scholar
  13. 13.
    Wan X K, Tang Q, Yuan S F, Jiang D E and Wang Q M 2015 Au19 nanocluster featuring a V-shaped alkynyl-gold motif J. Am. Chem. Soc. 137 652PubMedCrossRefGoogle Scholar
  14. 14.
    Wang Y, Wan X K, Ren L, Su H, Li G, Malola S, Lin S, Tang Z, Häkkinen H, Teo B K, Wang Q M and Zheng N 2016 Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: Observation of promoting effect of surface ligands on catalysis by metal nanoparticles J. Am. Chem. Soc. 138 3278PubMedCrossRefGoogle Scholar
  15. 15.
    Hong W, Li H, Liu S X, Fu Y, Li J, Kaliginedi V, Decurtins S and Wandlowski T 2012 Trimethylsilyl-terminated oligo(phenylene ethynylene)s: an approach to single-molecule junctions with covalent Au-C \(\sigma \)-bonds J. Am. Chem. Soc. 134 19425PubMedGoogle Scholar
  16. 16.
    Thomas K G and Kamat P V 2003 Chromophore-functionalized gold nanoparticles Acc. Chem. Res36 888PubMedCrossRefGoogle Scholar
  17. 17.
    Yang J S and Swager T M 1998 Fluorescent porous polymer films as TNT chemosensors: Electronic and structural effects J. Am. Chem. Soc. 120 11864CrossRefGoogle Scholar
  18. 18.
    Sohn H, Sailor M J, Magde D and Trogler W C 2003 Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles J. Am. Chem. Soc. 125 3821PubMedCrossRefGoogle Scholar
  19. 19.
    Feng L, Li H, Qu Y and Lu C 2012 Detection of TNT based on conjugated polymer encapsulated in mesoporous silica nanoparticles through FRET Chem. Commun. 48 4633CrossRefGoogle Scholar
  20. 20.
    Ma Y, Li H, Peng S and Wang L 2012 Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection Anal. Chem. 84 8415PubMedCrossRefGoogle Scholar
  21. 21.
    Ma Y and Wang L 2014 Upconversion luminescence nanosensor for TNT selective and label-free quantification in the mixture of nitroaromatic explosives Talanta 120 100PubMedCrossRefGoogle Scholar
  22. 22.
    Ma Y, Huang S, Deng M and Wang L 2014 White upconversion luminescence nanocrystals for the simultaneous and selective detection of 2,4,6-trinitrotoluene and 2,4,6-trinitrophenol ACS Appl. Mater. Interfaces 6 7790PubMedCrossRefGoogle Scholar
  23. 23.
    Bai M, Huang S, Xu S, Hu G and Wang L 2015 Fluorescent nanosensors via photoinduced polymerization of hydrophobic inorganic quantum dots for the sensitive and selective detection of nitroaromatics Anal. Chem. 87 2383PubMedCrossRefGoogle Scholar
  24. 24.
    Shanmugaraju S and Mukherjee P S 2015 \(\pi \)-Electron rich small molecule sensors for the recognition of nitroaromatics Chem. Commun. 51 16014Google Scholar
  25. 25.
    Wang S, Ma Y and Wang L 2015 Nanomaterials for luminescence detection of nitroaromatic explosives Trends Anal. Chem. 65 13CrossRefGoogle Scholar
  26. 26.
    Maity P, Bhatt A, Agrawal B and Jana A 2017 pt(ii)\(\text{ c }^{\wedge }\text{ n }^{\wedge }\text{ n }\)-based luminophore/micelle adducts for sensing nitroaromatic explosives Langmuir  33 4291PubMedGoogle Scholar
  27. 27.
    Chen W, Zuckerman N B, Konopelski J P and Chen S 2010 Pyrene-functionalized ruthenium nanoparticles as effective chemosensors for nitroaromatic derivatives Anal. Chem. 82 461PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang S, Han L, Li L, Cheng J, Yuan D and Luo J 2013 A highly symmetric metal-organic framework based on a propeller-like RU-organic metalloligand for photocatalysis and explosives detection Cryst. Growth Des. 13 5466CrossRefGoogle Scholar
  29. 29.
    Crosby G A and Demas J N 1971 Measurement of photoluminescence quantum yields J. Phys. Chem. 75 991CrossRefGoogle Scholar
  30. 30.
    Wang Y, Ren J, Deng K, Gui L and Tang Y 2000 Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media Chem. Mater. 12 1622CrossRefGoogle Scholar
  31. 31.
    Hostetler M J, Wingate J E, Zhong C J, Harris J E, Vachet R W, Clark M R, Londono J D, Green S J, Stokes J J, Wignall G D, Glish G L, Porter M D, Evans N D and Murray R W 1998 Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size Langmuir 14 17CrossRefGoogle Scholar
  32. 32.
    Berezin M Y and Achilefu S 2010 Fluorescence lifetime measurements and biological imaging Chem. Rev. 110 2641PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Institute of Research and Development, Gujarat Forensic Sciences UniversityGandhinagarIndia

Personalised recommendations