Advertisement

Journal of Chemical Sciences

, 131:12 | Cite as

New organotin(IV) chlorides derived from N-(2-hydroxyphenyl)aryloxy sulfamates. Synthesis, characterization and DSC investigation

  • Ali AkremiEmail author
  • Adel Noubigh
Regular Article
  • 33 Downloads

Abstract

Three monomeric pentacoordinate organotin complexes were prepared by the reaction of dimethyltin dichloride with three N-(2-hydroxy)phenyl substituted aryloxy sulfamates in alkaline medium. The newly synthesized compounds were characterized on the basis of their infrared, CPMAS NMR, powder XRD diffraction and elemental analysis. The XRD powder analyses revealed a tetragonal system for two complexes, whereas the third one was crystallized in the hexagonal system. The thermal decomposition behavior of the synthesized complexes have been investigated and all the organotin compounds have a similar order of thermal stability.

Graphical Abstract

Synopsis We synthesized three organotin complexes 3a-c and have investigated their thermal properties. The XRD powder analyses revealed tetragonal system for two complexes, whereas the third one crystallized in hexagonal system. The differential scanning calorimetric data demonstrate high stability of all the synthesized complexes.

Keywords

Penta-coordinate complex organotin complexes sulfamates powder XRD thermal stability 

Notes

Acknowledgements

The authors wish to acknowledge the approval and the support of this research study by the grant N\(^{\circ }\). SCI-2017-1-7-F-6928 from the Deanship of Scientific Research in Northern Border University, Arar, KSA.

Supplementary material

12039_2018_1586_MOESM1_ESM.pdf (566 kb)
Supplementary material 1 (pdf 566 KB)

References

  1. 1.
    Kaise A, Ohta K, Shirata C and Endo Y 2017 Design and synthesis of p-carborane-containing sulfamates as multitarget anti-breast cancer agents Bioorg. Med. Chem. 25 6417PubMedCrossRefGoogle Scholar
  2. 2.
    Caira M R, Bourne S A and Samsodien H 2015 Thermal, X-ray Structural, and Dissolution Characteristics of Solid Forms Derived from the Anticancer Agents 2-Methoxyestradiol and 2-Methoxyestradiol-3,17-O, O-Bis-Sulfamate J. Pharm. Sci. 10 3418CrossRefGoogle Scholar
  3. 3.
    Kumar B S, Raghuvanshi D S, Hasanain M, Alam S, Sarkar J, Mitra K, Khan F and Negi A S 2016 Recent Advances in chemistry and pharmacology of 2-methoxyestradiol: An anticancer investigational drug Steroids 110 9Google Scholar
  4. 4.
    Rami M, Dubois L, Parvathaneni N -K, Alterio V, van Kuijk S J A, Monti S M, Lambin P, De Simone G, Supuran C T and Winum J -Y 2013 Hypoxia-Targeting Carbonic Anhydrase IX Inhibitors by a New Series of Nitroimidazole-Sulfonamides/Sulfamides/Sulfamates J. Med. Chem. 56 8512PubMedCrossRefGoogle Scholar
  5. 5.
    Shah R, Singh J, Singh D, Jaggi A S and Singh N 2016 Sulfatase inhibitors for recidivist breast cancer treatment: A chemical review Euro. J. Med. Chem. 114 170CrossRefGoogle Scholar
  6. 6.
    Gadakh B, Vondenhoff G, Lescrinier E, Rozenski J, Froeyen M and Van Aerschot A 2014 Base substituted 5’-O-(N-isoleucyl)sulfamoyl nucleoside analogues as potential antibacterial agents Bioorg. Med. Chem. 22 2875PubMedCrossRefGoogle Scholar
  7. 7.
    Cherian P T, Yao J, Leonardi R, Maddox M M, Luna V A, Rock C O and Lee R E 2012 Acyl-sulfamates target the essential glycerol-phosphate acyltransferase (PlsY) in Gram-positive bacteria Bioorg. Med. Chem. 20 4985PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Xu L -C and Siedlecki C A 2016 Antibacterial polyurethanes Stuart L Cooper and Jianjun Guan (Eds.) Advances in Polyurethane Biomaterials (Witney, Oxford, UK: Woodhead Publishing) p. 247CrossRefGoogle Scholar
  9. 9.
    Gmurek M, Horn H and Majewsky M 2015 Phototransformation of sulfamethoxazole under simulated sunlight: Transformation products and their antibacterial activity toward Vibrio fischeri Sci. Total Environ. 538 58PubMedCrossRefGoogle Scholar
  10. 10.
    Capasso C and Supuran C T 2015 Bacterial Carbonic Anhydrases as Drug Targets C T Supuran and G De Simone (Eds.) Carbonic Anhydrases as Biocatalysts First edn. (Amsterdam, Netherlands: Elsevier) p. 275CrossRefGoogle Scholar
  11. 11.
    Römer W, Oettel M and Schwarz S 1998 Scavestrogen sulfamates: correlation between estrone sulfatase inhibiting and antioxidant effects Can. J. Physiol. Pharmacol. 76 99PubMedCrossRefGoogle Scholar
  12. 12.
    Marciniak G and Petty M G 1996 Design and biological evaluation of new antioxidants for use in cerebrovascular disorders Drug. Future 21 1037CrossRefGoogle Scholar
  13. 13.
    Winum J -Y, Scozzafava A, Montero J -L and Supuran C T 2005 Sulfamates and their therapeutic potential Med. Res. Rev. 25 186PubMedCrossRefGoogle Scholar
  14. 14.
    Musa M A, Cooperwood J S and Khan M O F 2008 A Review of Coumarin Derivatives in Pharmacotherapy of Breast Cancer Curr. Med. Chem. 15 2664PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Jin H, Wright M, Pastor R, Mish M, Metobo S, Jabri S, Lansdown R, Cai R, Pyun P, Tsiang M, Chen X and Kim C U 2008 Tricyclic HIV integrase inhibitors: Potent and orally bioavailable C5-aza analogs Bioorg. Med. Chem. Lett. 18 1388PubMedCrossRefGoogle Scholar
  16. 16.
    Flynn S and Babi M A 2017 Anticonvulsants F J Dowd, B Johnson and A Mariotti (Eds.) Pharmacology and Therapeutics for Dentistry Seventh edn. (Amsterdam, Netherlands: Elsevier) p. 176Google Scholar
  17. 17.
    Villalba M L, Enrique A V, Higgs J, Castaño R A, Goicoechea S, Taborda F D, Gavernet L, Lick I D, Marder M and Bruno-Blanch L E 2016 Novel sulfamides and sulfamates derived from amino esters: Synthetic studies and anticonvulsant activity Eur. J. Pharmacol. 774 55PubMedCrossRefGoogle Scholar
  18. 18.
    Kubicki M and Codding P W 2001 The anticonvulsant sulfamates. 2. (1,4-benzodioxin-2(3H)-yl)- and (1,2,3,4-tetrahydro-2-naphthalenyl) methyl sulfamic acid esters J. Mol. Struct. 561 65CrossRefGoogle Scholar
  19. 19.
    Gavernet L, Barrios I A, Sella Cravero M and Bruno-Blanch L E 2007 Design, synthesis, and anticonvulsant activity of some sulfamides Bioorg. Med. Chem. 15 5604PubMedCrossRefGoogle Scholar
  20. 20.
    Su Y -f, Wang G -Bo, Kuo D T F, Chang M -l and Shih Y -h 2016 Photoelectrocatalytic degradation of the antibiotic sulfamethoxazole using \(\text{ TiO }_{{2}}\)/Ti photoanode Appl. Catal. B: Environ. 186 184Google Scholar
  21. 21.
    Connor E E 1998 Sulfonamide antibiotics Prim. Care Update Ob Gyns. 5 32CrossRefGoogle Scholar
  22. 22.
    Scozzafava A, Supuran C T and Carta F 2013 Antiobesity carbonic anhydrase inhibitors: a literature and patent review Expert Opin. Ther. Pat. 23 725PubMedCrossRefGoogle Scholar
  23. 23.
    Supuran C T 2016 How many carbonic anhydrase inhibition mechanisms exist? J. Enzym. Inhib. Med. Chem. 31 345CrossRefGoogle Scholar
  24. 24.
    Carta F and Supuran C T 2013 Diuretics with carbonic anhydrase inhibitory action: a patent and literature review (2005–2013) Expert Opin. Ther. Pat. 23 681PubMedCrossRefGoogle Scholar
  25. 25.
    Boyd III A E 1998 Sulfonylurea Receptors, Ion Channels, and Fruit Flies Diabetes 37 847Google Scholar
  26. 26.
    Maren T H 1976 Relations Between Structure and Biological Activity of Sulfonamides Annu. Rev. Pharmacol. Toxicol. 16 309PubMedCrossRefGoogle Scholar
  27. 27.
    Carta F, Di Cesare Mannelli L, Pinard M, Ghelardini C, Scozzafava A, McKenna R and Supuran C T 2015 A class of sulfonamide carbonic anhydrase inhibitors with neuropathic pain modulating effects Bioorg. Med. Chem. 23 1828PubMedCrossRefGoogle Scholar
  28. 28.
    Weber A, Casini A, Heine A, Kuhn D, Supuran C T, Scozzafava A and Klebe G 2004 Unexpected nanomolar inhibition of carbonic anhydrase by COX-2 selective celecoxib: New pharmacological opportunities due to related binding site recognition J. Med. Chem. 47 550PubMedCrossRefGoogle Scholar
  29. 29.
    Supuran C T, Scozzafava A and Casini A 2003 Carbonic anhydrase inhibitors Med. Res. Rev. 23 146PubMedCrossRefGoogle Scholar
  30. 30.
    Supuran C T and Scozzafava A 2002 Applications of carbonic anhydrase inhibitors and activators in therapy Exp. Opin. Ther. Patents 12 217CrossRefGoogle Scholar
  31. 31.
    Supuran C T and Scozzafava A 2000 Carbonic anhydrase inhibitors and their therapeutic potential Exp. Opin. Ther. Patents 10 575CrossRefGoogle Scholar
  32. 32.
    Scozzafava A, Owa T, Mastrolorenzo A and Supuran C T 2003 Anticancer and antiviral sulfonamides Curr. Med. Chem. 10 925PubMedCrossRefGoogle Scholar
  33. 33.
    Slyvka Yu I, Fedorchuk A A, Pokhodylo N T, Lis T, Kityk I V and Mys’kiv M G 2018 A novel copper(I) sulfamate \(\uppi \)-complex based on the 5-(allylthio)-1-(3,5-dimethylphenyl)-1H-tetrazole ligand: Alternating-current electrochemical crystallization, DFT calculations, structural and NLO properties studies Polyhedron 147 86Google Scholar
  34. 34.
    Kessissoglou D P, Manoussakis G E, Hatzidimitriou A G and Kanatzidis M G 1987 Synthesis and characterization of sulfonylurea complexes with cadmium(2+), mercury(2+) and silver(+). Crystal and molecular structures of potassium tris(chlorpropamide)cadmate and bis(tolbutamide)mercury Inorg. Chem. 26 1395Google Scholar
  35. 35.
    Cleveland J M 1968 Sulfamate complexes of plutonium(IV) Inorg. Chem. 7 874CrossRefGoogle Scholar
  36. 36.
    Carcelli M, Pelizzi C, Pelizzi G, Mazza P and Zani F 1995 The different behaviour of the di-2-pyridylketone 2-thenoylhydrazone in two organotin compounds. Synthesis, X ray structure and biological activity J. Organomet. Chem. 488 55CrossRefGoogle Scholar
  37. 37.
    Gielen M 2002 Organotin compounds and their therapeutic potential: a report from the Organometallic Chemistry Department of the Free University of Brussels App. Organomet. Chem. 16 481CrossRefGoogle Scholar
  38. 38.
    Gielen M 1996 Tin-based antitumour drugs Coord. Chem. Rev. 151 41CrossRefGoogle Scholar
  39. 39.
    Nath M, Pokharia S and Yadav R 2001 Organotin(IV) complexes of amino acids and peptides Coord. Chem. Rev. 215 99CrossRefGoogle Scholar
  40. 40.
    Akremi A, Noubigh A and Abualreish M J A 2018 Novel Organotin(IV) Complexes Derived from Chiral Benzimidazoles: Synthesis, Molecular Structure and Spectral Properties Orient. J. Chem. 34 764CrossRefGoogle Scholar
  41. 41.
    Sbihi H, Beji M and Baklouti A 2008 Reaction of Acids and Diacids with Aroxy(alcoxy)sulfonyl Isocyanates: Synthesis of N-Acylsulfamates, Disulfamates, and N,N’-Disulfonylureas Synth. Comm. 38 2490CrossRefGoogle Scholar
  42. 42.
    Lohaus G 1972 Darstellung und umsetzungen von aryloxysulfonylisocyanaten Chem. Ber. 105 2791CrossRefGoogle Scholar
  43. 43.
    Hedayatullah M and Brault J F 1977 Polyhalogenated aryl-N-chlorosulfonylcarbamates and aminosulfates C. R. Acad. Sci. C 285 153Google Scholar
  44. 44.
    Harris R K, Sebald A, Furlani D and Tagliavini G 1988 High-resolution solid-state tin-119 NMR investigations of organotin halides \(\text{ R }_{{3}}\)SnX and \(\text{ R }_{{2}}\text{ SnX }_{{2}}\) (R=alkyl, aryl; X=Cl, Br) Organometallics 7 388Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceNorthern Border UniversityArarKingdom of Saudi Arabia
  2. 2.Department of ChemistryHigh Institute of Environmental Sciences and Technologies, Carthage UniversityBorj CedriaTunisia
  3. 3.Laboratory of Physical Chemistry of Materials, Preparatory Institute for Scientific and Technical Studies of La Marsa, 2070Carthage UniversityTunisTunisia

Personalised recommendations