Synthesis and structure of Anderson cluster based organic–inorganic hybrid solid, \([\{\hbox {Cu}(2\hbox {-}pzc)(\hbox {H}_{2}\hbox {O})_{2}\}_{2}\{\hbox {H}_{7}\hbox {AlMo}_{6}\hbox {O}_{24}\}]\cdot 17\hbox {H}_{2}\hbox {O}\) and its dye adsorption properties

  • Arti Joshi
  • Sonalika Vaidya
  • Monika SinghEmail author
Regular Article


An inorganic–organic hybrid compound, namely \([\{\hbox {Cu}(2\hbox {-}pzc)(\hbox {H}_{2}\hbox {O})_{2}\}_{2}\{\hbox {H}_{7}\hbox {AlMo}_{6}\hbox {O}_{24}\}]{\cdot }17\hbox {H}_{2}\hbox {O}\) was synthesized based on Anderson–Evans cluster by the normal stirring process at room temperature. Its structure consists of metal coordination polymer covalently linked with Anderson–Evans cluster forming a 2D-sheet with void space containing water chains as determined by Single-Crystal X-ray Diffraction technique. This material owing to its void space of approx. 13 Å was utilized for adsorption of organic dyes like Methylene Blue (MB), Basic Violet 1 (BV1) and shows ultra-high uptake (more than 90%) within 5 min.

Graphical abstract:

Anderson-Evans cluster based organic-inorganic hybrid solid is reported which shows remarkable activity in adsorbtion of basic dyes namely Methylene Blue and Basic Violet 1 from their aqueous solution.


Polyoxomolybdates Anderson–Evans cluster dye adsorption 



MS acknowledges Prof. Ramanan for Single Crystal X-Ray facility at IIT Delhi. AJ thanks INST for PhD fellowship. MS appreciates the financial support from the Department of Science and Technology (DST) SB/FT/CS-091/2014 Project, and instrumental facility and infrastructural support from INST. SV thanks INST (25(1)/2015-INST) for financial support.


  1. 1.
    He W W, Li S L, Zang H Y, Yang G S, Zhang S R, Su Z M and Lan Y Q 2014 Entangled structures in polyoxometalate-based coordination polymers Coord. Chem. Rev. 279 141CrossRefGoogle Scholar
  2. 2.
    Bassil B S, Ibrahim M, Al-Oweini R, Asano M, Wang Z, van Tol J, Dalal N S, Choi K Y, Ngo Biboum R, Keita B and Nadjo L 2011 A Planar \(\{\text{ Mn }_{19}\,(\text{ OH })_{12}\}^{26+}\) unit incorporated in a 60-tungsto-6-silicate polyanion Angew. Angew Chem. Int. Ed. 50 5961CrossRefGoogle Scholar
  3. 3.
    Guo J, Zhang D, Chen L, Song Y, Zhu D and Xu Y 2013 Syntheses, structures and magnetic properties of two unprecedented hybrid compounds constructed from open Wells–Dawson anions and high-nuclear transition metal clusters Dalton Trans. 42 8454CrossRefGoogle Scholar
  4. 4.
    Sha J, Wang C, Peng J, Chen J, Tian A and Zhang P 2007 [Cu (4, \(4^\prime \)-bipy)]2[H4P2W18O62]\(\cdot 2{\rm H}_{2}{\rm O}\): the first three-dimensional framework based on saturated Wells–Dawson POMs modified by multi-track Cu–N coordination polymeric chains Inorg. Chem. Commun. 10 1321CrossRefGoogle Scholar
  5. 5.
    Zhao J W, Zhang J L, Li Y Z, Cao J and Chen L J 2014 Novel one-dimensional organic–inorganic polyoxometalate hybrids constructed from heteropolymolybdate units and copper–aminoacid complexes Cryst. Growth Des. 14 1467CrossRefGoogle Scholar
  6. 6.
    Suzuki K, Tang F, Kikukawa Y, Yamaguchi K and Mizuno N 2014 Visible-light-induced photoredox catalysis with a tetracerium-containing silicotungstate Angew. Chem. Int. Ed. 53 5356CrossRefGoogle Scholar
  7. 7.
    Li F and Xu L 2011 Coordination assemblies of polyoxomolybdate cluster framework: from labile building blocks to stable functional materials Dalton Trans. 40 4024CrossRefGoogle Scholar
  8. 8.
    Cui X B, Xu J Q, Sun Y H, Li Y, Ye L and Yang G Y 2004 hydrothermal synthesis and crystal structure of a novel 1-D chain structure constructed from polyoxometalates and coordination complex fragments Inorg. Chem. Commun. 7 58CrossRefGoogle Scholar
  9. 9.
    Li X X, Wang Y X, Wang R H, Cui C Y, Tian C B and Yang G Y 2016 Designed assembly of heterometallic cluster organic frameworks based on anderson-type polyoxometalate clusters Angew. Chem. 128 6572CrossRefGoogle Scholar
  10. 10.
    Lan Y Q, Li S L, Wang X L, Shao K Z, Du D Y, Zang H Y and Su Z M 2008 Self-assembly of polyoxometalate-based metal organic frameworks based on octamolybdates and copper-organic units: from CuII, CuI, II to CuI via changing organic amine Inorg. Chem. 47 8179CrossRefGoogle Scholar
  11. 11.
    Meng J X, Lu Y, Li Y G, Fu H and Wang E B 2009 Base-directed self-assembly of octamolybdate-based frameworks decorated by flexible N-containing ligands Cryst. Growth Des. 9 4116CrossRefGoogle Scholar
  12. 12.
    Song F, Ding Y, Ma B, Wang C, Wang Q, Du X, Fu S and Song J 2013 K 7 [Co III Co II (\(\text{ H }_{2}\text{ O }\)) W 11 O 39]: a molecular mixed-valence Keggin polyoxometalate catalyst of high stability and efficiency for visible light-driven water oxidation Energy Environ. Sci. 6 1170CrossRefGoogle Scholar
  13. 13.
    Wang X L, Qin C, Wang E B, Su Z M, Li Y G and Xu L 2006 Self-assembly of nanometer-scale [Cu\(_{24}\)I\(_{10}\)L\(_{12}\)]\(^{14+}\) cages and ball-shaped Keggin clusters into a (4, 12)-connected 3D framework with photoluminescent and electrochemical properties Angew. Chem. Int. Ed. 45 7411CrossRefGoogle Scholar
  14. 14.
    Lu Y, Xu Y, Li Y, Wang E, Xu X and Ma Y 2006 New polyoxometalate compounds built up of lacunary Wells–Dawson anions and trivalent lanthanide cations Inorg. Chem. 45 2055CrossRefGoogle Scholar
  15. 15.
    Bustos C, Hasenknopf B, Thouvenot R, Vaissermann J, Proust A and Gouzerh P 2003 Lindqvist-type (Aryldiazenido) polyoxomolybdates-synthesis, and structural and spectroscopic characterization of compounds of the type (nBu\(_{4}\)N)\(_{3}\)[Mo\(_{6}\)O\(_{18}\) (N\(_{2}\)Ar)] Eur. J. Inorg. Chem. 2003 2757CrossRefGoogle Scholar
  16. 16.
    Zhang J, Li Q, Zeng M, Huang Y, Zhang J, Hao J and Wei Y 2016 The proton-controlled synthesis of unprecedented diol functionalized Anderson-type POMs Chem. Commun. 52 2378CrossRefGoogle Scholar
  17. 17.
    Pavani K, Lofland S E, Ramanujachary K V and Ramanan A 2007 The hydrothermal synthesis of transition metal complex templated octamolybdates Eur. J. Inorg. Chem. 2007 568CrossRefGoogle Scholar
  18. 18.
    Singh M and Ramanan A 2011 Crystal engineering of polyoxomolybdates based metal–organic solids: the case of chromium molybdate cluster based metal complexes and coordination polymers Cryst. Growth Des. 11 3381CrossRefGoogle Scholar
  19. 19.
    Qin J S, Du D Y, Guan W, Bo X J, Li Y F, Guo L P, Su Z M, Wang Y Y, Lan Y Q and Zhou H C 2015 Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water J. Am. Chem. Soc. 137 7169CrossRefGoogle Scholar
  20. 20.
    Blazevic A and Rompel A 2016 The Anderson–Evans polyoxometalate: from inorganic building blocks via hybrid organic–inorganic structures to tomorrows “Bio-POM” Coord. Chem. Rev. 307 42CrossRefGoogle Scholar
  21. 21.
    Long D L, Tsunashima R and Cronin L 2010 Polyoxometalates: building blocks for functional nanoscale systems Angew. Chem. Int. Ed. 49 1736CrossRefGoogle Scholar
  22. 22.
    Wang C C, Li J R, Lv X L, Zhang Y Q and Guo G 2014 Photocatalytic organic pollutants degradation in metal–organic frameworks Energy Environ. Sci. 7 2831CrossRefGoogle Scholar
  23. 23.
    Robinson T, McMullan G, Marchant R and Nigam P 2001 Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative Bioresour. Technol. 77 247CrossRefGoogle Scholar
  24. 24.
    Soghomonian V, Chen Q, Haushalter R C and Zubieta J 1995 Investigations into the targeted design of solids: hydrothermal synthesis and structures of one-, two-, and three-dimensional phases of the oxovanadium–organodiphosphonate system Angew. Chem. Int. Ed. 34 223CrossRefGoogle Scholar
  25. 25.
    Allis D G, Rarig R S, Burkholder E and Zubieta J 2004 A three-dimensional bimetallic oxide constructed from octamolybdate clusters and copper–ligand cation polymer subunits. A comment on the stability of the octamolybdate isomers J. Mol. Struct. 688 11CrossRefGoogle Scholar
  26. 26.
    Taleghani S, Mirzaei M, Eshtiagh-Hosseini H and Frontera A 2016 Tuning the topology of hybrid inorganic–organic materials based on the study of flexible ligands and negative charge of polyoxometalates: a crystal engineering perspective Coord. Chem. Rev. 309 84CrossRefGoogle Scholar
  27. 27.
    Rauf M A and Ashraf S S 2012 Survey of recent trends in biochemically assisted degradation of dyes Chem. Eng. J. 15 520CrossRefGoogle Scholar
  28. 28.
    Deng S, Xu H, Jiang X and Yin J 2013 Poly(vinyl alcohol)(PVA)-enhanced hybrid hydrogels of hyperbranched poly (ether amine)(hPEA) for selective adsorption and separation of dyes Macromolecules 46 2399CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Li D, Chen Y, Wang X and Wang S 2009 Catalytic wet air oxidation of dye pollutants by polyoxomolybdate nanotubes under room condition Appl. Catal. B Environ. 86 182CrossRefGoogle Scholar
  30. 30.
    Bruker Analytical X-ray Systems, SMART: Bruker Molecular Analysis Research Tool, Version 5.618; Bruker AXS: Madison, WI, 2000Google Scholar
  31. 31.
    Bruker Analytical X-ray Systems, SAINT-NT, Version 6.04; Bruker AXS: Madison, WI, 2001Google Scholar
  32. 32.
    Bruker Analytical X-ray Systems, SHELXTL-NT, Version 6.10; Bruker AXS: Madison, WI, 2000Google Scholar
  33. 33.
    Klaus B 1999 DIAMOND, version 1.2c; University of Bonn: GermanyGoogle Scholar
  34. 34.
    Zhang Y Q, Wang C C, Zhu T, Wang P and Gao S J 2015 Ultra-high uptake and selective adsorption of organic dyes with a novel polyoxomolybdate-based organic–inorganic hybrid compound RSC Adv. 5 45688CrossRefGoogle Scholar
  35. 35.
    Hao X L, Ma Y Y, Wang Y H, Zang H Y and Li Y G 2014 Isopolymolybdate-induced organic–inorganic hybrid assemblies with copper ions and bichelate-bridging ligands CrystEngComm 16 10017CrossRefGoogle Scholar
  36. 36.
    Najafi M, Abbasi A, Masteri-Farahani M and Janczak J 2015 Two novel octamolybdate nanoclusters as catalysts for dye degradation by air under room conditions Dalton Trans. 44 6089CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Institute of Nano Science and TechnologyMohaliIndia

Personalised recommendations