Advertisement

Cu-doped zeolitic imidazolate framework catalysed highly selective conversion of alkynes to \(\upbeta \)-keto and vinyl sulfones using sodium sulfinates

  • Nageswara Rao Yalavarthi
  • Narayanarao Gundoju
  • Ramesh Bokam
  • Mangala Gowri PonnapalliEmail author
Regular Article

Abstract

\(\hbox {Cu}^{2+}\)-doped zeolitic imidazolate framework-8 (ZIF-8)-catalyzed one-pot procedure to synthesize \(\upbeta \)-keto and vinyl sulfones by the direct oxysulfonylation and hydrosulfonylation of alkynes via radical reaction under mild conditions has been described. The advantages of this protocol included broad substrate scope and excellent \(\upbeta \)-keto and E-stereoselectivity. The Cu/ZIF-8 catalyst not only exhibited excellent performance but also had a great stability in the reaction, successfully allowing its reuse up to five cycles. This efficient Cu/ZIF-8 heterogeneous catalyst is explored for the first time to generate \(\upbeta \)-keto and vinyl sulfones.

Graphical Abstract:

\(\hbox {Cu}^{2+}\)-doped zeolitic imidazolate framework-8 (ZIF-8)-catalyzed one-pot procedure to synthesize \(\upbeta \)-keto and vinyl sulfones by the direct oxysulfonylation and hydrosulfonylation of alkynes via radical reaction under mild conditions is described. The advantages of this protocol included broad substrate scope and excellent \(\upbeta \)-keto and E-stereoselectivity. This efficient Cu/ZIF-8 heterogeneous catalyst is explored for the first time for C-S bond formation.

Keywords

Phenyl acetylenes Cu/ZIF-8 \(\upbeta \)-Keto and vinyl sulfone 

Notes

Acknowledgements

We are thankful to the director, Dr. S. Chandrasekhar, IICT for constant support and UGC, New Delhi, India for awarding SRF to YNR.

Supplementary material

12039_2018_1582_MOESM1_ESM.pdf (4 mb)
Supplementary material 1 (pdf 4059 KB)

References

  1. 1.
    Hou J, Luan Y, Yu J, Qi Y, Wang G and Lu Y 2016 Fabrication of hierarchical composite microspheres of copper-doped \(\text{ Fe }_{3}\text{ O }_{4}\)@P4VP@ZIF-8 and their application in aerobic oxidation New J. Chem. 40 10127CrossRefGoogle Scholar
  2. 2.
    Amini M, Anbari A P, Ramezani S, Gautam S and Chae K H 2016 Copper (II) Oxide Nanoparticles as an Efficient Catalyst in the Azide–Alkyne Cycloaddition ChemistrySelect 1 4607Google Scholar
  3. 3.
    Rout L, Sen T K and Punniyamurthy T 2007 Efficient CuO-Nanoparticle-Catalyzed C-S Cross-Coupling of Thiols with Iodobenzene Angew. Chem. Int. Ed. 46 5583CrossRefGoogle Scholar
  4. 4.
    Banerjee R, Furukawa H, Britt D, Knobler C, O’Keeffe M and Yaghi O M 2009 Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties J. Am. Chem. Soc. 131 3875CrossRefGoogle Scholar
  5. 5.
    Lu G and Hupp J T 2010 Metal-Organic Frameworks as Sensors: A ZIF-8 Based Fabry-Pérot Device as a Selective Sensor for Chemical Vapors and Gases J. Am. Chem. Soc. 132 7832CrossRefGoogle Scholar
  6. 6.
    Liu S, Xiang Z, Hu Z, Zheng X and Cao D 2011 Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules J. Mater. Chem. 21 6649CrossRefGoogle Scholar
  7. 7.
    Zheng C, Wang Y, Phua S Z F, Lim W Q and Zhao Y 2017 ZnO–DOX@ZIF-8 Core–Shell Nanoparticles for pH-Responsive Drug Delivery ACS Biomater. Sci. Eng. 3 2223CrossRefGoogle Scholar
  8. 8.
    Mousavi B, Chaemchuen S, Moosavi B, Luo Z, Gholampourab N and Verpoort F 2016 Zeolitic imidazole framework-67 as an efficient heterogeneous catalyst for the conversion of \(\text{ CO }_{2}\) to cyclic carbonates New J. Chem. 40 517CrossRefGoogle Scholar
  9. 9.
    Gao Y, Wu J, Zhang W, Tan Y, Gao J, Zhao J and Tang B 2015 Synthesis of nickel oxalate/zeolitic imidazolate framework-67 (\(\text{ NiC }_{2}\text{ O }_{4}/\text{ ZIF }\text{- }67\)) as a supercapacitor electrode New J. Chem. 39 94CrossRefGoogle Scholar
  10. 10.
    Schejn A, Aboulaich L, Balan V, Falk J, Lalevee G, Medjahdi L, Aranda K, Mozet and Schneider R 2015 \(\text{ Cu }^{2+}\)-doped zeolitic imidazolate frameworks (ZIF-8): efficient and stable catalysts for cycloadditions and condensation reactions Catal. Sci. Technol. 5 1829Google Scholar
  11. 11.
    Daia J, Xiaoa X, Duanb S, Liua J, Hea J, Leia J and Wanga L 2015 Synthesis of nickel oxalate/zeolitic imidazolate framework-67 (\(\text{ NiC }_{2}\text{ O }_{4}/\text{ ZIF }\text{- }67\)) as a supercapacitor electrode New J. Chem. 39 94CrossRefGoogle Scholar
  12. 12.
    Ahmed B N, Bhadra H J, Lee S H and Jhung 2018 Metal-organic framework-derived carbons: Preparation from ZIF-8 and application in the adsorptive removal of sulfamethoxazole from water Catal. Today 301 90Google Scholar
  13. 13.
    Tran U P N, Le K K A and Phan N T S 2011 Expanding Applications of Metal-Organic Frameworks: Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction ACS Catal. 1 120Google Scholar
  14. 14.
    Jin R, Bian Z, Li J, Dinga M and Gao L 2013 ZIF-8 crystal coatings on a polyimide substrate and their catalytic behaviours for the Knoevenagel reaction Dalton Trans. 42 3936CrossRefGoogle Scholar
  15. 15.
    Xiang M, Ipek V, Suri W, Massefski N, Pan Y, Ge M, Tam Y, Xing J F, Tobin X, Xu and Tam S 2005 Synthesis and biological evaluation of sulfonamidooxazoles and \(\upbeta \)-keto sulfones: selective inhibitors of 11\(\upbeta \)-hydroxysteroid dehydrogenase type I Bioorg. Med. Chem. Lett. 15 2865Google Scholar
  16. 16.
    Dunny E, Doherty W P, Evans P G, Malthouse D, Nolan and Knox A J S 2013 Vinyl Sulfone-Based Peptidomimetics as Anti-Trypanosomal Agents: Design, Synthesis, Biological and Computational Evaluation J. Med. Chem. 56 6638Google Scholar
  17. 17.
    Woo S Y, Kim J H, Moon M K, Han S H, Yeon S K, Choi J W, Jang B K, Song H J, Kang Y G, Kim J W, Lee J, Kim D J, Hwang O and Park K D 2014 Discovery of Vinyl Sulfones as a Novel Class of Neuroprotective Agents toward Parkinson’s Disease Therapy J. Med. Chem. 57 1473CrossRefGoogle Scholar
  18. 18.
    Dunny E, Doherty W, Evans P, Malthouse J P G, Nolan D and Knox A J S 2013 Vinyl Sulfone-Based Peptidomimetics as Anti-Trypanosomal Agents: Design, Synthesis, Biological and Computational Evaluation J. Med. Chem. 56 6638CrossRefGoogle Scholar
  19. 19.
    Xiang M, Ipek V, Suri M, Tam Y, Xing N, Huang Y, Zhang J, Tobin T S, Mansour and McKew J 2007 \(\upbeta \)-Keto sulfones as inhibitors of 11\(\upbeta \)-hydroxysteroid dehydrogenase type I and the mechanism of action Bioorg. Med. Chem. 15 4396Google Scholar
  20. 20.
    Wei W, Li J, Yang D, Wen J, Jiao Y, You J and Wang H 2014 Copper-catalyzed highly selective direct hydrosulfonylation of alkynes with arylsulfinic acids leading to vinyl sulfones Org. Biomol. Chem. 12 1861CrossRefGoogle Scholar
  21. 21.
    Rawat V S, Reddy P L M and Bojja S 2014 Chemoselective one-pot synthesis of \(\upbeta \)-keto sulfones from ketones RSC Adv. 04 5165CrossRefGoogle Scholar
  22. 22.
    Xu Y, Tang X, Hu W, Wu W and Jiang H 2014 Transition-metal-free synthesis of vinyl sulfones viatandem cross-decarboxylative/coupling reactions of sodium sulfinates and cinnamic acids Green Chem. 16 3720CrossRefGoogle Scholar
  23. 23.
    Mao S, Gao Y R, Zhu X Q, Guo D D and Wang Y Q 2015 Copper-Catalyzed Radical Reaction of \(N\)-Tosylhydrazones: Stereoselective Synthesis of (\(E\))-Vinyl Sulfones Org. Lett. 17 1692CrossRefGoogle Scholar
  24. 24.
    Rong G, Mao J, Gan H, Zheng Y and Zang G 2015 Iron/Copper Co-Catalyzed Synthesis of Vinyl Sulfones from Sulfonyl Hydrazides and Alkyne Derivatives J. Org. Chem. 80 4697CrossRefGoogle Scholar
  25. 25.
    Handa S, Fennewald J C and Lipshutz B H 2014 Aerobic Oxidation in Nanomicelles of Aryl Alkynes, in Water at Room Temperature Angew. Chem. Int. Ed. 53 3432CrossRefGoogle Scholar
  26. 26.
    Lu Q, Zhang J, Zhao G, Qi Y, Wang H and Lei Aiwen 2013 Dioxygen-Triggered Oxidative Radical Reaction: Direct Aerobic Difunctionalization of Terminal Alkynes toward \(\upbeta \)-Keto Sulfones J. Am. Chem. Soc. 135 11481CrossRefGoogle Scholar
  27. 27.
    Nobukazu T 2011 Stereoselective Synthesis of (\(E\))-Alkenyl Sulfones from Alkenes or Alkynes via Copper-Catalyzed Oxidation of Sodium Sulfinates Synlett 09 1308Google Scholar
  28. 28.
    Nobukazu T 2014 Aerobic copper-catalyzed synthesis of (\(E\))-alkenyl sulfones and (\(E)-\upbeta \)-halo-alkenyl sulfones via addition of sodium sulfinates to alkynes Tetrahedron 70 1984CrossRefGoogle Scholar
  29. 29.
    Lu Q, Zhang J, Zhao G, Qi Y, Wang H and Lei A 2013 Dioxygen-Triggered Oxidative Radical Reaction: Direct Aerobic Difunctionalization of Terminal Alkynes toward \(\upbeta \)-Keto Sulfones Am. Chem. Soc. 135 11481CrossRefGoogle Scholar
  30. 30.
    Terent’ev O, Mulina O M, Pirgach D A, Demchuk D V, Syroeshkin M A and Nikishin G I 2016 Copper(I)-mediated synthesis of \(\upbeta \)-hydroxysulfones from styrenes and sulfonylhydrazides: an electrochemical mechanistic study RSC Adv. 06 93476CrossRefGoogle Scholar
  31. 31.
    Sharma V K and Millero F J 1988 Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand Environ. Sci. Technol. 22 786CrossRefGoogle Scholar
  32. 32.
    Voelker B M, Sedlak D L and Zafiriou O C 2000 Chemistry of Superoxide Radical in Seawater: Reactions with Organic Cu Complexes Environ. Sci. Technol. 34 1036CrossRefGoogle Scholar
  33. 33.
    Gonz’alez-D’avila, Santana-Casiano J M, Gonz’alez A G, P’erez N and Millero F J 2009 Oxidation of copper(I) in seawater at nanomolar levels Mar. Chem. 115 118CrossRefGoogle Scholar
  34. 34.
    Yuan X, Pham A N, Xing G, Rose A L and Waite T D 2012 Effects of pH, Chloride, and Bicarbonate on Cu(I) Oxidation Kinetics at Circumneutral pH Environ. Sci. Technol. 46 1527CrossRefGoogle Scholar
  35. 35.
    Zhou P, Zhang J, Zhang Y, Liu Y, Liang J, Liu B and Zhang W 2016 Generation of hydrogen peroxide and hydroxyl radical resulting from oxygen-dependent oxidation of L-ascorbic acid via copper redox-catalyzed reactions RSC Adv. 6 38541CrossRefGoogle Scholar
  36. 36.
    Filson G W and Walton J H 1931 The Autoxidation of Stannous and Cuprous Chlorides by Air J. Phys. Chem. 36 740CrossRefGoogle Scholar
  37. 37.
    Henry P M 1966 Oxidation of Cuprous Chloride by Oxygen in Glacial Acetic Acid Inorg. Chem. 5 688CrossRefGoogle Scholar
  38. 38.
    Jhaveri S and Sharma M M 1967 Kinetics of absorption of oxygen in aqueous solutions of cuprous chloride Chem. Eng. Sci. 22 1CrossRefGoogle Scholar
  39. 39.
    Gray R 1969 Kinetics of oxidation of copper(I) by molecular oxygen in perchloric acid-acetonitrile solutions J. Am. Chem. Soc. 91 56CrossRefGoogle Scholar
  40. 40.
    Taniguchi T, Zaimoku H and Ishibashi H 2011 A Mild Oxidative Aryl Radical Addition into Alkenes by Aerobic Oxidation of Arylhydrazines Chem-Eur. J. 17 4307CrossRefGoogle Scholar
  41. 41.
    Lu Q, Zhang J, Zhao G, Qi Y, Wang H and Lei A 2013 Dioxygen-Triggered Oxidative Radical Reaction: Direct Aerobic Difunctionalization of Terminal Alkynes toward \(\upbeta \)-Keto Sulfones J. Am. Chem. Soc. 135 11481CrossRefGoogle Scholar
  42. 42.
    Mandalaparthi P, Dipak Kumar T, Sridhar B, Pravin R L and Dharmendra Kumar T 2016 Magnetically separable nano-copper catalyzed unprecedented stereoselective synthesis of E-vinyl sulfones from tosylmethyl isocyanide and alkynes: TosMIC as a source of the sulfonyl group Org. Chem. Front. 03 795CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Nageswara Rao Yalavarthi
    • 1
  • Narayanarao Gundoju
    • 1
  • Ramesh Bokam
    • 1
  • Mangala Gowri Ponnapalli
    • 1
    Email author
  1. 1.Centre for Natural Products and Traditional KnowledgeCSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations