Advertisement

Uncatalyzed gas phase aziridination of alkenes by organic azides. Part 2. Whole azide reaction with alkene

  • S Premila Devi
  • R H Duncan LyngdohEmail author
Regular Article
  • 31 Downloads

Abstract

The B3LYP/6-31G(d,p) DFT method was used to study alkene aziridination by azides through uncatalyzed thermal gas phase routes which involve the whole azide reactant molecule without dissociation. Two mechanisms were studied – Route I involving concerted azide addition to alkene with the elimination of \(\hbox {N}_{2}\), and the multi-step Route II involving 1,3-dipolar cycloaddition between azide and alkene. Three azides \(\mathbf R \hbox {N}_{3}\) (R = H, Me, Ac) are reacted with alkene substrates forming aziridine products. The concerted addition–elimination step of Route I is exothermic with an appreciable barrier, where the facility order \(\hbox {Ac} > \hbox {Me}>\) H points to electrophilicity of the azide reactant. The initial 1,3-dipolar cycloaddition step of Route II involves smaller barriers than Route I, while thermal decomposition of the triazoline intermediate to aziridine and \(\hbox {N}_{2}\) involves two more steps with an N-alkylimine intermediate. The very high barrier for N-alkylimine cyclization to aziridine could be offset by the high exothermicity of the previous step. Geometries of the transition states for various reaction steps studied here are described as ‘early’ or ‘late’ in good accordance with the Hammond postulate. Two other mechanisms (Routes A and B) studied earlier (involving discrete nitrene intermediates) are compared with Routes I and II, where Route II involving 1,3-dipolar cycloaddition is predicted to be energetically the most favored of all the four mechanisms for thermal gas-phase aziridination of alkenes by azides.

Graphical Abstract

SYNOPSIS This DFT study examines various routes for alkene aziridination by whole azides (\(\mathbf R \hbox {N}_{3})\). Route I involves concerted addition-elimination of \(\mathbf R \hbox {N}_{3}\) to alkene. The multi-step Route II involves 1,3-dipolar cycloaddition. Including two other routes involving discrete nitrenes which were studied earlier, Route II is predicted as the most feasible.

Keywords

Alkene aziridination by azides 1, 3-dipolar cycloaddition triazoline decomposition density functional theory 

Notes

Acknowledgements

S. P. D. thanks the University Grants Commission for financial assistance through the UGC Research Fellowship for Meritorious Students.

Supplementary material

12039_2018_1575_MOESM1_ESM.pdf (601 kb)
Supplementary material 1 (pdf 600 KB)

References

  1. 1.
    Padwa A and Murphree S S 2006 Epoxides and aziridines – a mini review ARKIVOC  3 6Google Scholar
  2. 2.
    Hennessy J 2014 Aziridine synthesis Nature Chem6 168CrossRefGoogle Scholar
  3. 3.
    Bellavia-Lund C and Wudl F 1997 Synthesis of [70] azafulleroids: Investigations of azide addition to \(\text{ C }_{{70}}\) J. Am. Chem. Soc119 943CrossRefGoogle Scholar
  4. 4.
    Averdung J, Luftmann H, Mattay J, Claus K and Abraham W 1995 Synthesis of 1,2-(2,3-dihydro-1 H-azirino)-[60]fullerene, the parent fulleroaziridine Tetrahedron Lett. 36 2957CrossRefGoogle Scholar
  5. 5.
    Scriven E F V and Turnbull C K 1988 Azides: Their preparation and synthetic uses Chem. Rev88 297CrossRefGoogle Scholar
  6. 6.
    Carmen Gil S B, Knepper K and Zimmermann V 2005 Organic azides: An exploding diversity of a unique class of compounds Angew. Chem. Int. Ed44 5188CrossRefGoogle Scholar
  7. 7.
    Pellisier H 2014 Recent developments in asymmetric aziridination Adv. Synth. Catal.  356 1899CrossRefGoogle Scholar
  8. 8.
    Osborn H M I and Sweeney J 1997 The asymmetric synthesis of aziridines Tetrahedron Asymmetry  11 1693CrossRefGoogle Scholar
  9. 9.
    Xue Z, Louisa V M D, Weeks J H, Whittlesey B R and Mayer M F 2010 Asymmetric aziridination of N-tert-butanesulfinyl imines with phenyldiazomethane via sulfur ylides ARKIVOC 7 65Google Scholar
  10. 10.
    Janardanan D and Sunoj R B 2008 Enantio- and diastereoselectivities in chiral sulfur ylide promoted asymmetric aziridination reactions J. Org. Chem73 8163CrossRefGoogle Scholar
  11. 11.
    Aggarwal V K, Alsonso E, Fang G, Ferrara M, Hynd G and Porcelloni M 2001 Application of chiral sulfides to catalytic asymmetric aziridination and cyclopropanation with in situ generation of the diazo compound Angew. Chemie Int. Ed40 1433CrossRefGoogle Scholar
  12. 12.
    Li Z, Conser K R and Jacobsen E N 1993 Asymmetric alkene aziridination with readily available chiral diimine-based catalysts J. Am. Chem. Soc115 5326CrossRefGoogle Scholar
  13. 13.
    Li Z, Quan R W and Jacobsen E N 1995 Mechanism of the (diimine)copper-catalyzed asymmetric aziridination of alkenes. Nitrene transfer via ligand-accelerated catalysis J. Am. Chem. Soc117 5889CrossRefGoogle Scholar
  14. 14.
    Wu H, Xu L-W, Xia C-G, Ge J and Yang L 2005 Convenient metal-free aziridination of alkenes with chloramine-T using tetrabutylammonium iodide in water Synth. Comm. 39 1413CrossRefGoogle Scholar
  15. 15.
    Devi S P, T Salam and Duncan Lyngdoh R H 2016 Uncatalyzed thermal gas phaseaziridination of alkenes by organic azides. Part I: Mechanisms with discrete nitrene species J. Chem. Sci. 128 681CrossRefGoogle Scholar
  16. 16.
    Padwa A and Pearson W H (Eds.) 2002 Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products In The Chemistry of Heterocyclic Compounds Vol. 59 (New York: Wiley)Google Scholar
  17. 17.
    Sha C K and Mohanakrishnan A K 2002 Azides in synthetic applications of 1,3-dipolar cycloaddition chemistry towards heterocycles and natural products Vol 59 A Padwa and W H Pearson (Eds.) (New York: Wiley)Google Scholar
  18. 18.
    Huisgen R 1961 Centenary lecture – 1,3-dipolar cycloadditions Proc. Chem. Soc. London 357Google Scholar
  19. 19.
    Meldal M and Tornoe C W 2008 Cu-catalyzed azide-alkyne cycloaddition Chem. Rev108 2952CrossRefGoogle Scholar
  20. 20.
    Kolb H C, Finn M G and Sharpless K B 2001 Click chemistry: diverse chemical function from a few good reactions Angew. Chem. Int. Ed40 2004CrossRefGoogle Scholar
  21. 21.
    Baskin J M, Prescher J A, Laughlin S T, Agard N J, Chang P V, Miller I A, Lo A, Codelli J A and Bertozzi C R 2007 Copper-free click chemistry for dynamic in vivo imaging Proc. Natl. Acad. Sci. USA 104 16793CrossRefGoogle Scholar
  22. 22.
    Ess D H and Houk K N 2008 Theory of 1,3-dipolar cycloadditions: Distortion/interaction and frontier molecular orbital models J. Am. Chem. Soc.  130 10187CrossRefGoogle Scholar
  23. 23.
    Chen X F, Yang K and Han K L 2009 Theoretical study of 1,3-dipolar cycloaddition of hydrazoic acid to substituted ynamines Chin. J. Chem. Phys. 22 43Google Scholar
  24. 24.
    Schoenebeck F, Ess D H, Jones G O and Houk K N 2009 Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: A computational study J. Am. Chem. Soc. 131 8121CrossRefGoogle Scholar
  25. 25.
    Karmakar S and Datta A 2015 Metal-free azide-alkyne click reaction: role of substituents and heavy atom tunneling J. Phys. Chem. B 119 11540CrossRefGoogle Scholar
  26. 26.
    Washington I and Houk K N 2003 Strategies for the design of organic aziridination reagents and catalysts: Transition structures for alkene aziridinations by NH transfer J. Org. Chem. 63 6497CrossRefGoogle Scholar
  27. 27.
    Almahy H A and Elhassan E 2013 Spectrospic study of 1,3-dipolar cycloaddition reaction of benzyl azide and acrylic acid Int. J. Chem. Sci. 11 1Google Scholar
  28. 28.
    Bach R D 2009 Ring strain energy in the cyclooctyl system. The effect of strain energy on [3+2] cycloaddition reactions with azides J. Am. Chem. Soc. 131 5233CrossRefGoogle Scholar
  29. 29.
    Zeghada A, Bentabed-Ababsa G, Derdour A, Abdelmounim S, Domingo L R, S’aez J A, Roisnel T, Nassare E and Mongin F 2011 A combined experimental and theoretical study of the thermal cycloaddition of aryl azides with activated alkenes Org. Biomol. Chem.  9 4295CrossRefGoogle Scholar
  30. 30.
    Cases M, Duran M, Mestres J, Martin N and Sola M 2001 Mechanism of the addition reaction of alkyl azides to [60]fullerene and the subsequent \(\text{ N }_{{2}}\) extrusion to form monoimino-[60]fullerenes J. Org. Chem. 66 433CrossRefGoogle Scholar
  31. 31.
    Janardanan D and Sunoj R B 2007 Computational investigations on the general reaction profile and diastereoselectivity on sulfur ylide promoted aziridination Chem. Eur. J.  13 4805CrossRefGoogle Scholar
  32. 32.
    Rajeev R and Sunoj R B 2011 Mechanism and electronic effects in nitrogen ylide-promoted asymmetric aziridination reaction Org. Biomol. Chem9 2123CrossRefGoogle Scholar
  33. 33.
    Jaccob M and Venuvanalingam P 2011 Computational insights into the roles of steric and electrostatic interactions in arsenic ylide mediated aziridination reactions Eur. J. Org. Chem. 3458Google Scholar
  34. 34.
    Kalaiselvan A and Venuvanalingam P 2007 Ring opening of boriranes vis-à-vis aziridines: An ab initio and DFT probe on the mechanisms Int. J. Quantum Chem107 1590CrossRefGoogle Scholar
  35. 35.
    Lee C, Yang W and Parr R G 1988 Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B 37 785CrossRefGoogle Scholar
  36. 36.
    Becke A D 1993 A new mixing of Hartree-Fock and local density-functional theories J. Chem. Phys. 98 1372CrossRefGoogle Scholar
  37. 37.
    Scott A P and Radom L 1996 Harmonic vibrational frequencies: An evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory and semiempirical scale factors J. Phys. Chem. 100 16502CrossRefGoogle Scholar
  38. 38.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J R, Pomelli C C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J, Gaussian, Inc., Wallingford CT, Gaussian 09, Revision C.01, 2010 Google Scholar
  39. 39.
    Hammond G S 1955 A correlation of reaction rates J. Am. Chem. Soc.  77 334CrossRefGoogle Scholar
  40. 40.
    Burgess E M, Carithers R and McCullagh L 1968 Photochemical decomposition of 1H- 1,2,3-triazole derivatives J. Am. Chem. Soc. 90 1923CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of ChemistryNorth-Eastern Hill UniversityShillongIndia

Personalised recommendations