Advertisement

Journal of Chemical Sciences

, 130:170 | Cite as

Investigation of PEG-6000 bridged \(\hbox {-N-SO}_{3}\hbox {H}\) functionalized geminal dicationic ionic liquids for catalytic conversion of fructose to 5-hydroxymethylfurfural

  • Pinky Gogoi
  • Ruli Borah
Regular Article
  • 11 Downloads

Abstract

Eight new members of two series of PEG-6000-bridged geminal dicationic ionic liquids based on diphenylammonium/imidazolium cation were synthesized by the change of four anions \(\hbox {CF}_{3}\hbox {COO}^{-}\), \(\hbox {CCl}_{3}\hbox {COO}^{-}\), \(\hbox {AcO}^{-}\) and \(\hbox {HSO}_{4}^{-}\). They were investigated as reusable acidic catalysts for dehydration of fructose to 5-hydroxymethylfurfural in polar aprotic solvent. The characterizations of dicationic ionic liquids were done using \({}^{1}\hbox {H NMR}\), \({}^{13}\hbox {C NMR}\), IR and TGA analyses. Irrespective of Hammett acidity strength of the eight ILs, they displayed single peak selectivity for the 5-hydroxymethyl furfural intermediate in HPLC analysis.

Graphical Abstract

Two series of N-sulfonic acid functionalized PEG-6000 bridged geminal dicationic diphenylammonium/imidazolium ionic liquids were developed in pair with \(\hbox {CF}_{3}\hbox {COO}^{-}\), \(\hbox {CCl}_{3}\hbox {COO}^{-}\), \(\hbox {AcO}^{-}\) and \(\hbox {HSO}_{4}^{-}\) anions. Single peak selectivity of 5-hydroxymethylfurfural in HPLCs was observed from dehydration of fructose in polar aprotic solvent using these acidic ionic liquid catalysts.

Keywords

PEG-6000 linker dicationic ionic liquid dehydration of fructose reusable catalyst 

Notes

Acknowledgements

The authors are thankful to Sophisticated Analytical Instrumentation Centre, Tezpur University for analyses of various samples and SERB-Department of Science and Technology, Government of India, for funding a research project grant number EMR/2016/002108 to R.B.

Supplementary material

12039_2018_1570_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (pdf 1388 KB)

References

  1. 1.
    Han X and Armstrong D W 2005 Using geminal dicationic ionic liquids as solvents for high-temperature organic reactions Org. Lett. 7 4205Google Scholar
  2. 2.
    Holbrey J D, Visser A E, Spear S K, Reichert W M, Swatloski R P, Broker G A and Rogers R D 2003 Mercury (II) partitioning from aqueous solutions with a new, hydrophobic ethylene-glycol functionalized bis-imidazolium ionic liquid Green Chem. 5 129CrossRefGoogle Scholar
  3. 3.
    Canter N 2007 Using dicationic liquids as high temperature lubricants Tribol. Lubr. Techol. 63 12Google Scholar
  4. 4.
    Pitawala J, Matic A, Martinelli A, Jacobsson P, Koch V and Croce F 2009 Thermal properties and ionic conductivity of imidazolium bis (trifluoromethanesulfonyl) imide dicationic ionic liquids J. Phys. Chem. B 113 10607CrossRefPubMedGoogle Scholar
  5. 5.
    van den Broeke J, Winter F, Deelman B J and van Koten G 2002 A highly fluorous room-temperature ionic liquid exhibiting fluorous biphasic behavior and its use in catalyst recycling Org. Lett. 4 3851CrossRefPubMedGoogle Scholar
  6. 6.
    Xiao J C and Shreeve J N M 2005 Synthesis of 2,2’biimidazolium-based ionic liquids: use as a new reaction medium and ligand for palladium-catalyzed suzuki cross-coupling reactions J. Org. Chem. 70 3072CrossRefPubMedGoogle Scholar
  7. 7.
    Jin C M, Ye C, Phillips B S, Zabinski J S, Liu X, Liu W and Jean’ne M S 2006 Polyethylene glycol functionalized dicationic ionic liquids with alkyl or polyfluoroalkyl substituents as high temperature lubricants J. Mater. Chem. 16 1529CrossRefGoogle Scholar
  8. 8.
    Anderson J L and Armstrong D W 2005 Immobilized ionic liquids as high-selectivity/high-temperature/high-stability gas chromatography stationary phases Anal. Chem. 77 6453CrossRefPubMedGoogle Scholar
  9. 9.
    Anderson J L, Armstrong D W and Wei G T 2006 Ionic liquids in analytical chemistry Anal. Chem. 78 2893Google Scholar
  10. 10.
    Huddleston J G, Willauer H D, Swatloski R P, Visser A E and Rogers R D 1998 Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction Chem. Commun. 16 1765CrossRefGoogle Scholar
  11. 11.
    Armstrong D W, Zhang L K, He L and Gross M L 2001 Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry Anal. Chem. 73 3679CrossRefPubMedGoogle Scholar
  12. 12.
    Carda-Broch S, Berthod A and Armstrong D W 2003 Ionic matrices for matrix-assisted laser desorption/ionization time-of-flight detection of DNA oligomers Rapid Commun. Mass Spectrom. 17 553CrossRefPubMedGoogle Scholar
  13. 13.
    Soukup-Hein R J, Remsburg J W, Dasgupta P K and Armstrong D W 2007 A general, positive ion mode ESI-MS approach for the analysis of singly charged inorganic and organic anions using a dicationic reagent Anal. Chem. 79 7346CrossRefPubMedGoogle Scholar
  14. 14.
    Benaglia M, Puglisi A and Cozzi F 2003 Polymer-supported organic catalysts Chem. Rev. 103 3401CrossRefPubMedGoogle Scholar
  15. 15.
    Wu F W, Hou R S, Wang H M, Kang I J and Chen L C 2012 Catalyst free indirect Friedländer synthesis of substituted quinolines from alcohols in PEG-400 J. Chin. Chem. Soc. 59 535CrossRefGoogle Scholar
  16. 16.
    Tang S, Baker G A and Zhao H 2012 Ether-and alcohol-functionalized task-specific ionic liquids: attractive properties and applications Chem. Soc. Rev. 41 4030CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhao Y N, Yang Z Z, Luo S H and He L N 2013 Design of task-specific ionic liquids for catalytic conversion of \(\text{ CO }_{2}\) with aziridines under mild conditions Catal. Today 200 2CrossRefGoogle Scholar
  18. 18.
    Hu Y L, Wang P C, Chen T and Lu M 2010 Facile and efficient amination of organic halides catalyzed by copper sulfate in PEG 1000-DIL/methylcyclohexane temperature-dependent biphasic system J. Chin. Chem. Soc. 57 604CrossRefGoogle Scholar
  19. 19.
    Ren Y M and Cai C A 2008 A green procedure for the protection of carbonyl compounds catalyzed by iodine in ionic liquid Tetrahedron Lett. 49 7110CrossRefGoogle Scholar
  20. 20.
    Fang D, Yang J and Jiao C 2011 Thermal-regulated PEG 1000-based ionic liquid/PM for one-pot three-component synthesis of 2, 4, 5-trisubstituted imidazoles Catal. Sci. Technol. 1 243CrossRefGoogle Scholar
  21. 21.
    Ren Y and Cai C 2010 Molecular iodine in ionic liquid: a green catalytic system for esterification and transesterification Synth. Commun. 40 1670CrossRefGoogle Scholar
  22. 22.
    Ren Y M, Shao J J, Wu Z C, Yang R C, Zhang Z and Tao T X 2014 PEG-1000 based dicationic acidic ionic liquid as an efficient catalyst for Mannich-type reaction in water Synth. Commun. 44 2529CrossRefGoogle Scholar
  23. 23.
    Ren Y M, Shao J J, Wu Z C, Zhang S and Tao T X 2014 Facile protection of carbonyl compounds as oxathiolanes and thioacetals promoted by PEG 1000-based dicationic acidic ionic liquid as chemoselective and recyclable catalyst J. Mol. Liq. 196 392CrossRefGoogle Scholar
  24. 24.
    Hu Y L, Jiang H, Zhu J and Lu M 2011 Facile and efficient hydrolysis of organic halides, epoxides, and esters with water catalyzed by ferric sulfate in a PEG 1000-DAIL [\(\text{ BF }_{4}\)]/toluene temperature-dependent biphasic system New J. Chem. 35 292CrossRefGoogle Scholar
  25. 25.
    Zhao H, Baker G A, Song Z, Olubajo O, Crittle T and Peters D 2008 Designing enzyme-compatible ionic liquids that can dissolve carbohydrates Green Chem. 10 696CrossRefGoogle Scholar
  26. 26.
    Wallert S, Drauz K, Grayson I, Gröger H, de Maria P D and Bolm C 2005 Ionic liquids as additives in the pig liver esterase (PLE) catalysed synthesis of chiral disubstituted malonates Green Chem. 7 602CrossRefGoogle Scholar
  27. 27.
    Holbrey J D, Visser A E, Spear S K, Reichert W M, Swatloski R P, Broker G A, Rogers R D 2003 Mercury (II) partitioning from aqueous solutions with a new, hydrophobic ethylene-glycol functionalized bis-imidazolium ionic liquid Green Chem. 5 129CrossRefGoogle Scholar
  28. 28.
    Dorjnamjin D, Ariunaa M, Shim Y K 2008 Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antimicrobial activity Int. J. Mol. Sci. 9 807CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Eshghi H, Mirzaei M, Hasanpour M and Mokaber-Esfahani M 2015 Benzimidazolium dicationic ionic liquid as an efficient and reusable catalyst for the synthesis of \(\alpha \)-aminophosphonates and bis(\(\alpha \)-aminophosphonates) under solvent-free condition Phosphorus Sulfur Silicon Relat. Elem. 190 1606CrossRefGoogle Scholar
  30. 30.
    Zhi H, Lü C, Zhang Q and Luo J 2009 A new PEG 1000-based dicationic ionic liquid exhibiting temperature-dependent phase behavior with toluene and its application in one-pot synthesis of benzopyrans Chem. Commun. 20 2878CrossRefGoogle Scholar
  31. 31.
    Liu W, Wang Y, Li W, Yang Y, Wang N, Song Z, Xia X F and Wang H 2015 Polyethylene glycol-400-functionalized dicationic acidic ionic liquids for highly efficient conversion of fructose into 5-hydroxymethylfurfural Catal. Lett. 145 1080CrossRefGoogle Scholar
  32. 32.
    Bicker M, Hirth J and Vogel H 2003 Dehydration of fructose to 5-hydroxymethylfurfural in sub-and supercritical acetone Green Chem. 5 280CrossRefGoogle Scholar
  33. 33.
    Román-Leshkov Y, Barrett C J, Liu Z Y and Dumesic J A 2007 Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates Nature 447 982CrossRefPubMedGoogle Scholar
  34. 34.
    Stöcker M 2008 Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials Angew. Chem. Int. Ed. 47 9200CrossRefGoogle Scholar
  35. 35.
    Corma A, Iborra S and Velty A 2007 Chemical routes for the transformation of biomass into chemicals Chem. Rev. 107 2411CrossRefPubMedGoogle Scholar
  36. 36.
    Huber G W, Chheda J N, Barrett C J and Dumesic J A 2005 Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates Science 308 1446CrossRefPubMedGoogle Scholar
  37. 37.
    Bridgwater A V and Peacocke G V C 2000 Fast pyrolysis processes for biomass Renew. Sustain. Energy Rev. 4 1CrossRefGoogle Scholar
  38. 38.
    Sutton D, Kelleher B and Ross J R 2001 Review of literature on catalysts for biomass gasification Fuel Process. Technol. 73 155CrossRefGoogle Scholar
  39. 39.
    Fukuda H, Kondo A and Noda H 2001 Biodiesel fuel production by transesterification of oils J. Biosci. Bioeng. 92 405CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sun Y and Cheng J 2002 Hydrolysis of lignocellulosic materials for ethanol production: a review Bioresour. Tech. 83 1CrossRefGoogle Scholar
  41. 41.
    Marzialetti T, Valenzuela Olarte M B, Sievers C, Hoskins T J, Agrawal P K and Jones C W 2008 Dilute acid hydrolysis of Loblolly pine: a comprehensive approach Ind. Eng. Chem. Res. 47 7131CrossRefGoogle Scholar
  42. 42.
    Taherzadeh M J, Eklund R, Gustafsson L, Niklasson C and Lidén G 1997 Characterization and fermentation of dilute-acid hydrolyzates from wood Ind. Eng. Chem. Res. 36 4659CrossRefGoogle Scholar
  43. 43.
    Wyman C E, Dale B E, Elander R T, Holtzapple M, Ladisch M R and Lee Y Y 2005 Coordinated development of leading biomass pretreatment technologies Bioresour. Tech. 96 1959CrossRefGoogle Scholar
  44. 44.
    Swatloski R P, Spear S K, Holbrey J D and Rogers R D 2002 Dissolution of cellose with ionic liquids J. Am. Chem. Soc. 124 4974CrossRefPubMedGoogle Scholar
  45. 45.
    Remsing R C, Swatloski R P, Rogers R D and Moyna G 2006 Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a \(^{13}\)C and \(^{35/37}\)Cl NMR relaxation study on model systems Chem. Commun. 12 1271CrossRefGoogle Scholar
  46. 46.
    Moulthrop J S, Swatloski R P, Moyna G and Rogers R D 2005 High-resolution \(^{13}\)C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions Chem. Commun. 12 1557CrossRefGoogle Scholar
  47. 47.
    Li C, Wang Q and Zhao Z K 2008 Acid in ionic liquid: An efficient system for hydrolysis of lignocellulose Green Chem. 10 177CrossRefGoogle Scholar
  48. 48.
    Vanoye L, Fanselow M, Holbrey J D, Atkins M P and Seddon K R 2009 Kinetic model for the hydrolysis of lignocellulosic biomass in the ionic liquid, 1-ethyl-3-methyl-imidazolium chloride Green Chem. 11 390CrossRefGoogle Scholar
  49. 49.
    Tunc S and Duman O 2008 The effect of different molecular weight of poly(ethylene glycol) on the electrokinetic and rheological properties of Na-bentonite suspensions Colloids Surf. A 317 93CrossRefGoogle Scholar
  50. 50.
    Das M, Bandyopadhyay D, Singh R P, Harde H, Kumar S and Jain S 2012 Orthogonal biofunctionalization of magnetic nanoparticles via “clickable” poly (ethylene glycol) silanes: a “universal ligand” strategy to design stealth and target-specific nanocarriers J. Mater. Chem. 22 24652CrossRefGoogle Scholar
  51. 51.
    Makagon B P and Bondarenko T A 1985 The hydration of polyethylene oxide and polyacrylamide in solution Polym. Sci. U. S. S. R. 27 630CrossRefGoogle Scholar
  52. 52.
    Ng K, Rosenberg A, Bastos M and Wadso I 1990 Heat capacity of poly(ethylene glycol)-water mixtures: poly(ethylene glycol)-water interactions Thermochim. Acta 169 339CrossRefGoogle Scholar
  53. 53.
    Branca C, Magazu S, Maisano G, Migliardo F, Migliardo P and Romeo G 2002 Hydration study of PEG/water mixtures by quasi elastic light scattering, acoustic and rheological measurements J. Phys. Chem. B 106 10272CrossRefGoogle Scholar
  54. 54.
    Peppas N A, Hilt J Z, Khademhosseini A and Langer R 2006 Hydrogels in biology and medicine: From molecular principles to bionanotechnology Adv. Mater. 18 1345CrossRefGoogle Scholar
  55. 55.
    Duncan D C and Whitten D G 2000 \(^{1}\)H NMR investigation of the composition, structure, and dynamics of cholesterol-stilbene tethered dyad organogels Langmuir 16 6445CrossRefGoogle Scholar
  56. 56.
    Shapiro Y E 2006 In Encyclopedia of Surface and Colloid Science P Somasundaran (Ed.) (Abingdon: Taylor & Francis) vol. 6. p. 4811Google Scholar
  57. 57.
    Cosgrove T and Obey T M 1996 In Encyclopedia of Nuclear Magnetic Resonance D M Grant and R K Harris (Ed.) (Hoboken:Wiley) vol. 2. p. 1384Google Scholar
  58. 58.
    Mayer C 2002 NMR on dispersed nanoparticles Prog. Nucl. Magn. Reson. Spectrosc. 40 307CrossRefGoogle Scholar
  59. 59.
    Gogoi P, Dutta A K, Sarma P and Borah R 2015 Development of Brönsted -Lewis acidic solid catalytic system of 3-methyl-1-sulfonic imidazolium transition metal chlorides for the preparation of bis(indolyl) methanes Appl. Catal. A: Gen. 492 133CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Chemical SciencesTezpur UniversityNapaamIndia

Personalised recommendations