Journal of Chemical Sciences

, 130:171 | Cite as

Synthesis of cage [4.4.2]propellanes and \({D_{3}}\)-trishomocubanes bearing spiro linkage

  • Sambasivarao KothaEmail author
  • Subba Rao Cheekatla
Regular Article


The synthesis of substituted cage [4.4.2]propellanes and \(D_{3}\)-trishomocubanes bearing spiro linkage have been assembled with the aid of Diels–Alder reaction and ring-rearrangement as key steps. Here, readily available 1,4-hydroquinone, isoprene, spiro[2.4]hepta-4,6-diene and spiro[4.4]nona-1,3-diene were used as starting materials. The unusual rearrangement of cage propellanes with zinc/acetic acid produced \(D_{3}\)-trishomocubanes in good yields.

Graphical Abstract

Several cage [4.4.2]propellanes and \(D_{3}\)-trishomocubanes have been assembled by Diels–Alder reaction (DA), [2+2] photocycloaddition, and acid-promoted rearrangement. Ring-rearrangement was observed in cage [4.4.2]propellane framework during the acid catalyzed reaction. Rearrangement approach provide new opportunities to construct unusual polycycles.


Cage compounds \(\hbox {MnO}_{2}\) oxidation Diels–Alder reaction [2+2] photocycloaddition acid-promoted rearrangement \(D_{3}\)-Trishomocubanes 



We thank the Defence Research and Development Organisation (DRDO, NO. ARDB/01/1041849/M/1), New Delhi, for financial assistance and gratefully acknowledge Praj Industries for Pramod Chaudhari Chair Professorship (Green Chemistry). S. K. thanks the Department of Science and Technology (DST, NO. SR/S2/JCB-33/2010) for the award of a J. C. Bose fellowship and S. R. C. thanks University Grants Commission (UGC), New Delhi for the award of a research fellowship.

Supplementary material

12039_2018_1569_MOESM1_ESM.pdf (2.8 mb)
Supplementary material 1 (pdf 2910 KB)


  1. 1.
    For selected reviews and monographs on cage molecules, see: (a) Osawa E and Yonemitsu O 1992 Carbocyclic Cage Compounds (New York: VCH); (b) Hopf H 2000 Classics in Hydrocarbon Chemistry (Weinheim: Wiley-VCH); (c) Biegasiewicz K F, Griffiths J R, Savage G P, Tsanaktsidis J and Priefer R 2015 Cubane: 50 Years Later Chem. Rev. 115 6719; (d) Levandovskiy I A, Sharapa D I, Cherenkova O A, Gaidai A V and Shubina T E 2010 The chemistry of \(D_{3}\)-trishomocubane Russ. Chem. Rev. 79 1005; (e) Mehta G and Rao H S P 1987 Synthetic Studies Directed Towards Bucky-Balls and Bucky Bowls Tetrahedron 54 13325Google Scholar
  2. 2.
    (a) Eaton P E 1992 Cubanes: Starting Materials for the Chemistry of the 1990s and the New Century Angew. Chem. Int. Edit. 31 1421; (b) Eaton P E, Zhang M-X, Gilardi R, Gelber N, Iyer S and Surapaneni R 2002 Octanitrocubnae: A New Nitrocarbon Propellants Explos. Pyrotech. 27 1; (c) Marchand A P, Sharma, G V M, Annapurna G S and Pednekar P R 1987 Pentacyclo[\(^{2,6}.0^{3,10}.0^{5,9}\)]undecane-4, 8, 11-trione, Pentacyclo[\(^{2,6}.0^{3,10}.0^{5,9}\)]undecane -4, 7, 11-trione (\(D_{3}\)-trishomocubanetrione), and 4, 4, 7, 7, 11, 11-Hexanitro[\(^{2,6}.0^{3,10}.0^{5,9}\)]undecane (\(D_{3}\)-Hexanitrotrishomocubane) J. Org. Chem. 52 4784Google Scholar
  3. 3.
    (a) Marchand A P, Suri S C, Earlywine A D, Powel D R and Vander Helm D 1984 Synthesis of methyl-and nitro-substituted pentacyclo[\(^{2,6}.0^{3,10}.0^{5,9}\)]undecane-8,11-diones J. Org. Chem. 49 670; (b) Fessner W D, Sedelmeier G, Spurr P R, Rihs G and Prinzbach H 1987 “Pagodane”: The Efficient Synthesis of a Novel, Versatile Molecular Framework J. Am. Chem. Soc. 109 4626; (c) Mehta G, Srikrishna A, Reddy A V and Nair M S 1981 A Novel, Versatile Synthetic Approach to Linearly Fused Tricyclopentanoids via Photo-thermal olefin metathesis Tetrahedron 37 4543; (d) Mehta G and Rao H S P 1987 The Trioxa[5]-peristylane System J Chem. Soc. Chem. Commun. 476Google Scholar
  4. 4.
    (a) Geldenhuys W J, Malan S F, Bloomquist J R, Marchand A P and Van Der Schyf C J 2005 Pharmacology and Structure-Activity Relationships of Bioactive Polycyclic Cage Compounds: A Focus on Pentacycloundecane Derivatives Med. Res. Rev. 25 21; (b) Sklyarova A S, Rodionov V N, Parsons C G, Quack G, Schreiner P R and Fokin A A 2013 Preparation and testing of homocubyl amines as therapeutic NMDA receptor antagonists Med. Chem. Res. 22 360; (c) Chalmers B A, Xing, Housten S, Clark C, Ghassabian S, Kuo A, Cao B, Reitsma A, Murray C E P, Stock J E, Boyle, G M, Pierce, C J, Littler, S W, Winkler D A, Bernhardt P V, Pasay C. J, De Voss J, McCarthy J, Parsons P G, Walter G H, Smith M T, Cooper H M, Nilsson S K, Tsanaktsidis J, Savage G P and Williams C M 2016 Validating Eaton’s Hypothesis: Cubane as a Benzene Bioisostere Angew. Chem. Int. Edit. 55 3580Google Scholar
  5. 5.
    (a) Paquette L A 1984 In Strategies and Tactics of Organic synthesis T Lindberg (Ed.) (New York: Academic Press) p.175; (b) Marchand A P 1989 In Advances in Theoretically Interesting Molecules R P Thummel (Ed.) (Greenwich, CT: JAI Press) Ch. 1 p. 357Google Scholar
  6. 6.
    (a) Griesbeck A G, Deufel T, Hohlneicher G, Rebentisch R and Steinwascher J 1998 Synthesis, Structure, and Properties of Twofold Bridged Sesquinorbornenes Eur. J. Org. Chem. 1759; (b) Mlinaric-Majerski K, Veljkovic J, Marchand A P and Ganguly B 1998 Thermodynamic Rearrangement of the Pentacyclo[\(^{2,6}.0^{3,10}.0^{5,9}\)]undecane Skeleton Tetrahedron 54 11381; (c) Sharapa D I, Gayday A V, Mitlenko A G, Levandovskiy I A and Shubina T E 2011 A Convenient Road to 1-Chloropentacycloundecanes – A Joint Experimental and Computational Investigation Eur. J. Org. Chem. 13 2554Google Scholar
  7. 7.
    (a) Mehta G, Srikrishna A, Rao K S, Reddy K R, Acharya K A, Puranik V G, Tavale S S and Guru Row T N 1987 Novel Polyquinanes from a Caged Hexacyclic [4.4.2]Propellane System J. Org. Chem. 52 457; (b) Mehta G and Rao K S 1985 Reductive carbon–carbon cleavage in caged systems. A new general synthesis of linearly fused cis-syn-cis-triquinanes J. Org. Chem. 50 5537; (c) Pecchioli T and Christmann M 2018 Synthesis of Highly Enantioenriched Propelladienes and their Application as Ligands in Asymmetric Rh-Catalyzed 1,4-additions Org. Lett. 20 5256; (d) Dilmaç A M, Spuling E, de Meijere A and Bräse S 2017 Propellanes – From a Chemical Curiosity to “Explosive” Materials and Natural Products Angew. Chem. Int. Edit. 56 5684; (e) Schneider L M, Schmiedel V M, Pecchioli T, Lentz D, Merten T and Christmann M 2017 Asymmetric Synthesis of Carbocyclic Propellanes 19 2310; (f) Majerski Z, Veljkovic J and Kaselj M 1988 1,7-Methanohomopentaprismane.A [2.2.1] propellane 53 2662Google Scholar
  8. 8.
    (a) Chow T J and Wu T K 1991 Chemistry of cage-shaped polyquinane derivatives. The reaction of 14-iodohexacyclo[\(^{2,6}.0^{3,13}.0^{4,11}.0^{5,9}\)]tetradecan-10-one in basic solution J. Org. Chem. 56 6833; (b) Nair M S, Sudhir U, Joly S and Rath N P 1999 Two Fascinating Rearrangements Through Selective Placement of Bromine Substituents. Photochemical Synthesis of 3-Bromo-7-(bromomethyl) tetracyclo[\(^{2,6}.0^{4,8}\)]undec-10(12)-ene-9,11-dione and its Rearrangement with Amines Tetrahedron 55 7653; (c) Marchand A P, Rajapaksa D, Reddy S P, Watson W H and Nagl A 1989 Tieffeneau-Demjanov ring homologations of two pentacyclo[\(^{2,6}.0^{3,10}.0^{5,9}\)]undecane-8, 11-diones J. Org. Chem. 54 5086; (d) Marchand, A P, Chong H S, Shukla R, Sharma G V M, Kumar K A, Zope U R and Bott S G 1996 Acid and Base Promoted Rearrangements of Hexacyclo[\(^{2,12}.0^{5,10}.0.^{5,15,}.0^{10,14}\)]hexadeca-6,8-diene-4,11-dione Tetrahedron 52 13531Google Scholar
  9. 9.
    (a) Kotha S and Dipak M K 2006 Design and Synthesis of Novel Propellanes by Using Claisen Rearrangement and Ring-Closing Metathesis as the Key Steps Chem. Eur. J. 12 4446; (b) Kotha S, Cheekatla S R, Chinnam A K and Jain T 2016 Design and synthesis of polycyclic bisindoles via Fisher indolization and ring-closing metathesis as key steps Tetrahedron Lett. 57 5605; (c) Kotha S and Cheekatla S R 2017 A New Synthetic Approach to \(C_{2}\)-Symmetric Octacyclic Cage Diol via Claisen Rearrangement and Ring-Closing Metathesis as the Key Steps Chem. Select 2 6877; (d) Kotha S, Manivannan E and Sreenivasachary N 1999 Allylation of caged diketones via fragmentation methodology J. Chem. Soc. Perkin Trans. 1 2845; (e) Kotha S, Seema V, Singh K and Deodhar K D 2010 Strategic utilization of catalytic metathesis and photo-thermal metathesis in caged polycyclic frames Tetrahedron Lett. 51 2301Google Scholar
  10. 10.
    (a) Kotha S, Cheekatla S R and Mandal B 2017 Synthesis and Rearrangement of Cage [4.3.2]propellanes that Contain a Spiro Linkage Eur. J. Org. Chem. 4277; (b) Kotha S and Cheekatla S R 2018 Molecular acrobatics in polycyclic frames: Synthesis of functionalized \(D_{3}\)-Trishomocubanes via rearrangement approach J. Org. Chem. 83 6315Google Scholar
  11. 11.
    (a) Lagoja I M and De clercq E 2008 Anti-influenza virus agents: Synthesis and mode of action Med. Res. Rev. 28 1; (b) Lal S, Mallick L, Rajkumar S, Ommen, O P, Reshmi S, Kumbhakarna N, Chowdhury A and Namboothiri I N N 2015 Synthesis and energetic properties of high-nitrogen substituted bishomocubanes J. Mater. Chem. A 3 22118; (c) Lim H N and Dong G 2016 Catalytic Cage formation via Controlled Dimerization of Norbornadienes: An Entry to Functionalized HCTDs (Heptacyclo[\(^{2,6}.0^{3,13}.0^{4,11}.0^{5,9}.0^{10,14}\)]tetradecanes) Org. Lett. 18 1104; (d) de Meijere A, Redlich S, Frank D, Magull J, Hofmeister A, Menzel H, Konig B and Svoboda J 2007 Octacyclopropylcubane and Some of Its Isomers Angew. Chem. Int. Edit. 46 4574; (e) Wilkinson S M, Gunosewoyo H, Barron M L, Boucher A, McDonnell M, Turner P, Morrison D E, Bennett M R, McGregor I S, Rendina L M and Kassiou M 2014 The First CNS-Active Carborane: A Novel \(\text{P}_{2}\text{ X }_{7}\) Receptor Antagonist with Antidepressant Activity ACS Chem. Neurosci. 5 335; (f) Kotha S, Cheekatla S R and Mhatre D S 2017 Ring-Closing Metathesis Approach to Cage Propellanes Containing Oxepane and Tetrahydrofuran Hybrid System Synthesis 49 5339Google Scholar
  12. 12.
    (a) Kotha S and Manivannan E 2002 Synthesis of functionalized cis-syn-cis triquinanes Indian J. Chem. Sect. B 41 808; (b) Dekker J, Dekker J J, Fourie L and Martins F J C 1976 J. S. African Chem. Inst. 29 114Google Scholar
  13. 13.
    Mashraqui S and Keehn P 1982 Active MnO2: Oxidative Dehydrogenations Synth. Commun. 12 637CrossRefGoogle Scholar
  14. 14.
    (a) Amor F, Royo P, Spaniol T P and Okuda J 2000 Chelated \(\upeta ^{5}\)-cyclopentadienyl-\(\upeta \)-ethyl complexes of molybdenum and tungsten; molecular structure of \(\text{ W }(\upeta ^{5}-\text{ C }_{5}\text{ H }_{4}\text{ CH }_{2}-\upeta -\text{ CH }_{2})(\text{ CO })_{3}\) J. Organomet. Chem. 604 126; (b) Green M L H and O’Hare D 1985 Studies on cyclic bis (\(\upeta 5\): \(\upsigma \)-2-cyclopentadienylidene-ethyl)- and bis(\(\upeta ^{5}\): \(\upsigma \)-4-cyclopentadienylidenebutyl)-molybdenum compounds J. Chem. Soc. Dalton Trans. 1585Google Scholar
  15. 15.
    (a) Kotha S, Chavan A S and Goyal D 2015 Diversity-Oriented Approaches to Polycyclics and Bioinspired Molecules via the Diels–Alder Strategy: Green Chemistry, Synthetic Economy, and Beyond ACS Comb. Sci. 17 253; (b) Nicolaou K C, Snyder S A, Montagnon T and Vassilikogiannakis G 2002 The Diels–Alder Reaction in Total Synthesis Angew. Chem. Int. Edit. 41 1668Google Scholar
  16. 16.
    Poplata S, Tröster A, Zou Y-Q and Bach T 2016 Recent Advances in the Synthesis of Cyclobutanes by Olefin [2+2] Photocycloaddition Reactions Chem. Rev. 116 9748CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology-BombayPowaiIndia

Personalised recommendations