Journal of Chemical Sciences

, 130:144 | Cite as

Spectrally resolved photon-echo spectroscopy of CdSe quantum dots at far from resonance excitation condition\(^{\S }\)

  • Debabrata GoswamiEmail author
Regular Article


Spectrally resolved photon echo spectroscopy in the off-resonance condition is reported for the first time to study the coherence and population dynamics of CdSe quantum dots. In this case, the information related to the system dynamics can be inferred indirectly. This is especially useful when such dynamical information might be hidden under the absorption maxima of the sample. We observe that a substantial intensity of the photon echo signal was obtained in two different CdSe quantum dot samples (CdSe 610 and CdSe 640), which have absorption maxima at 620 nm and 590 nm, respectively. Due to the difference in sizes of these two quantum dots, a small change is observed in the molecular dynamics of these two quantum-dot samples. Specifically, the spectral diffusion of CdSe 640 occurs within the first 50 fs, whereas that for CdSe 610 occurs at about 100 fs timescale. The integrated plots of the photon echo signal, as a function of population time, result in two decay constants. The faster among the two decay components is pulse width limited and is in between 30 and 40 fs at different fixed coherence times for both samples. The slower decay component for the CdSe 610 sample is found to be in the range of 75–85 fs, while that for CdSe 640, it is between 82 and 92 fs at different fixed coherence times.

Graphical Abstract

SYNOPSIS Excitonic dynamics of CdSe quantum-dots is presented using time-dependent spectrally-resolved photon-echo spectroscopy at 810 nm, which is ~160 nm red-shifted from their absorption maxima. Information related to system dynamics is inferred indirectly from such ‘far-from-resonance’ photon-echo experiments, which would be especially useful when the information is hidden within the sample’s absorption maxima.


Free induction decay spectrally resolved photon echo signal coherence time population time inhomogeneous broadening femtosecond 



This work on the application of high nonlinear optical spectroscopy for understanding photochemistry is dedicated to my Teacher Prof. M. V. George. I thank several of my present and past graduate students for help with experiments. I also thank Mrs. S. Goswami for language editing. The laser system used in these experiments were made possible due to the DST-FIST (2nd Phase 2010) funds. Funding was provided by Indian Space Research Organisation (Grant No. STC) and Science and Engineering Research Board (Grant No. Intramural Research).


  1. 1.
    Jordanides X J, Lang M J, Song X and Fleming G R 1999 Solvation Dynamics in Protein Environments Studied by Photon Echo Spectroscopy J. Phys. Chem. B 103 7995CrossRefGoogle Scholar
  2. 2.
    Agarwal R, Pral B S, Rizvi A H, Yang M and Fleming G R 2002 Two-color three pulse photon echo peak shift spectroscopy J. Chem. Phys.  116 6243CrossRefGoogle Scholar
  3. 3.
    Mukamel S 1995 In Principles of nonlinear optical spectroscopy (New York: Oxford University Press)Google Scholar
  4. 4.
    Boyd R W 1992 In Nonlinear Optics (Boston: Academic Press)Google Scholar
  5. 5.
    Brixner T, Stenger J, Vaswani H M, Cho M, Blankenship R E and Fleming G R 2005 Two-dimensional spectroscopy of electronic couplings in photosynthesis Nature 434 625CrossRefGoogle Scholar
  6. 6.
    Cho M, Vaswani H M, Brixner T, Stenger J and Fleming G R 2005 Exciton Analysis in 2D Electronic Spectroscopy J. Phys. Chem. B 109 10542CrossRefGoogle Scholar
  7. 7.
    Engel G S, Calhoun T R, Read E L, Ahn T, Mančal T, Cheng Y, Blankenship R E, and Fleming G R 2007 Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems Nature 446 782CrossRefGoogle Scholar
  8. 8.
    Shen Y R 1984 In Principles of Nonlinear Optics (New York: Wiley)Google Scholar
  9. 9.
    Dantus M 2001 Coherent Nonlinear Spectroscopy: From Femtosecond Dynamics to Control Ann. Rev. Phys. Chem.  52 639CrossRefGoogle Scholar
  10. 10.
    Fourkas J T 2002 Higher order optical correlation spectroscopy in liquids Annu. Rev. Phys. Chem.  53 17CrossRefGoogle Scholar
  11. 11.
    Dao L V, Lincoln C, Lowe M and Hannaford P 2003 Spectrally resolved two-colour three-pulse photon echo studies of vibrational dynamics of molecules Physica B: Condensed Matt. 327 123CrossRefGoogle Scholar
  12. 12.
    Dao L V, Lincoln C, Lowe M and Hannaford P 2004 Spectrally resolved femtosecond two-color three-pulse photon echoes: Study of ground and excited state dynamics in molecules J. Chem. Phys. 120 8434CrossRefGoogle Scholar
  13. 13.
    Lozovoy V V, Grimberg B I, Brown E J, Pastirk I and Dantus M 2000 Femtosecond spectrally dispersed three-pulse four-wave mixing: the role of sequence and chirp in controlling intramolecular dynamics J. Raman Spec. 31 41CrossRefGoogle Scholar
  14. 14.
    Demirdöven N, Khalil M, Golonzka O and Tokmakoff A 2001 Correlation Effects in the Two-Dimensional Vibrational Spectroscopy of Coupled Vibrations J. Phys. Chem. A 105 8025CrossRefGoogle Scholar
  15. 15.
    Volker S 1989 Hole-Burning Spectroscopy Annu. Rev. Phys. Chem. 40 499CrossRefGoogle Scholar
  16. 16.
    Joo T, Jia Y, Yu J, Lang M J and Fleming G R 1996 Third-order nonlinear time domain probes of solvation dynamics J. Chem. Phys. 104 6089CrossRefGoogle Scholar
  17. 17.
    De Boeij W P, Pshenichnikov M S and Wiersma D A 1996 System\(-\)Bath Correlation Function Probed by Conventional and Time-Gated Stimulated Photon Echo J. Phys. Chem. 100 11806CrossRefGoogle Scholar
  18. 18.
    Cho M, Yu J, Joo T, Nagasawa Y, Passino S A and Fleming G R 1996 The Integrated Photon Echo and Solvation Dynamics J. Phys. Chem. 100 11944CrossRefGoogle Scholar
  19. 19.
    De Boeij W P, Pshenichnikov M S, and Wiersma D A 1998 Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies Annu. Rev. Phys. Chem. 49 99CrossRefGoogle Scholar
  20. 20.
    Park J, and Joo T 2002 Nuclear dynamics in electronic ground and excited states probed by spectrally resolved four wave mixing J. Chem. Phys. 116 10801CrossRefGoogle Scholar
  21. 21.
    Book L D, and Scherer N F 1999 Wavelength-resolved stimulated photon echoes: Direct observation of ultrafast intramolecular vibrational contributions to electronic dephasing J. Chem. Phys. 111 792CrossRefGoogle Scholar
  22. 22.
    Karthick Kumar S, Tiwari V, Goswami T, and Goswami D 2009 Spectrally resolved photon echo spectroscopy of Zn(II), Co(II) and Ni(II)–octaethyl porphyrins Chem. Phys. Lett. 476 31CrossRefGoogle Scholar
  23. 23.
    Wehner M U, Steinbach D, and Wegener M 1996 Ultrafast coherent transients due to exciton-continuum scattering in bulk GaAs Phys. Rev. B 54 R5211CrossRefGoogle Scholar
  24. 24.
    Hataoka S, Itoh A, Tanahashi I, and Tanaka K 2000 High-density excitation effects of excitons in ZnSe quantum wells by spectrally resolved four-wave mixing J. Lumin. 87-89 853CrossRefGoogle Scholar
  25. 25.
    Klimov V I 2007 Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals Annu. Rev. Phys. Chem. 58 635CrossRefGoogle Scholar
  26. 26.
    Scholes G D 2008 Controlling the Optical Properties of Inorganic Nanoparticles Adv. Funct. Mater. 18 1145CrossRefGoogle Scholar
  27. 27.
    Kambhampati P 2011 Unraveling the Structure and Dynamics of Excitons in Semiconductor Quantum Dots Acc. Chem. Res. 44 1CrossRefGoogle Scholar
  28. 28.
    Ekimov A I, Kudryavtsev I A, Efros A L, Yazeva T V, Hache F, Schanne-Klein M C, Rodina A V, Ricard D and Flytzanis C 1993 Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions J. Opt. Soc. Am. B  10 100CrossRefGoogle Scholar
  29. 29.
    Efros A L and Rosen M 2000 The Electronic Structure of Semiconductor Nanocrystals Annu. Rev. Mater. Sci. 30 475CrossRefGoogle Scholar
  30. 30.
    Burda C, Chen X, Narayanan R and El-Sayed M A 2005 Chemistry and Properties of Nanocrystals of Different Shapes Chem. Rev. 105 1025CrossRefGoogle Scholar
  31. 31.
    Ekimov A, Efros A and Onushchenko A 1993 Quantum size effect in semiconductor microcrystals Solid State Comm. 88 947CrossRefGoogle Scholar
  32. 32.
    Henglein A 1982 Photo-Degradation and Fluorescence of Colloidal-Cadmium Sulfide in Aqueous Solution Ber. Bunsenges. Phys. Chem. 86 301CrossRefGoogle Scholar
  33. 33.
    Leatherdale C A, Woo W, Mikulec F V and Bawendi M G 2002 On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots J. Phys. Chem. B 106 7619CrossRefGoogle Scholar
  34. 34.
    Murray C B, Norris D J and Bawendi M G 1993 Synthesis and characterization of nearly monodisperse CdE (E \(=\) sulfur, selenium, tellurium) semiconductor nanocrystallites J. Am. Chem. Soc. 115 8706CrossRefGoogle Scholar
  35. 35.
    Mohamed M B, Burda C and El-Sayed M A 2001 Shape Dependent Ultrafast Relaxation Dynamics of CdSe Nanocrystals: Nanorods vs Nanodots Nano Lett. 1 589CrossRefGoogle Scholar
  36. 36.
    Norris D J and Bawendi M G 1996 Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots Phys. Rev. B 53 16338CrossRefGoogle Scholar
  37. 37.
    Soloviev V N, Eichhöfer A, Fenske D and Banin U 2000 Molecular Limit of a Bulk Semiconductor: Size Dependence of the “Band Gap” in CdSe Cluster Molecules J. Am. Chem. Soc. 122 2673CrossRefGoogle Scholar
  38. 38.
    Soloviev V, Eichhöfer A, Fenske D and Banin U 2001 Molecular Limit of a Bulk Semiconductor: Size Dependent Optical Spectroscopy Study of CdSe Cluster Molecules Phys. Stat. Sol. (b) 224 285CrossRefGoogle Scholar
  39. 39.
    Soloviev V N, Eichhöfer A, Fenske D and Banin U 2000 Molecular Limit of a Bulk Semiconductor: Size Dependence of the “Band Gap” in CdSe Cluster Molecules J. Am. Chem. Soc. 122 2673CrossRefGoogle Scholar
  40. 40.
    Nirmal M, Murray C B and Bawendi M G 1994 Fluorescence-line narrowing in CdSe quantum dots: Surface localization of the photogenerated exciton Phys. Rev. B 50 2293CrossRefGoogle Scholar
  41. 41.
    Norris D J, Sacra A, Murray C B and Bawendi M G 1994 Measurement of the size dependent hole spectrum in CdSe quantum dots Phys. Rev. Lett. 72 2612CrossRefGoogle Scholar
  42. 42.
    Sewall S L, Cooney R R and Kambhampati P 2009 Experimental tests of effective mass and atomistic approaches to quantum dot electronic structure: Ordering of electronic states Appl. Phys. Lett. 94 243116CrossRefGoogle Scholar
  43. 43.
    Guyot-Sionnest P, Shim M, Matranga C and Hines M 1999 Intraband relaxation in CdSe quantum dots Phys. Rev. B 60 R2181CrossRefGoogle Scholar
  44. 44.
    Burda C, Link S, Mohamed M and El-Sayed M 2001 The Relaxation Pathways of CdSe Nanoparticles Monitored with Femtosecond Time-Resolution from the Visible to the IR: Assignment of the Transient Features by Carrier Quenching J. Phys. Chem. B 105 12286CrossRefGoogle Scholar
  45. 45.
    McArthur E A, Morris-Cohen A J, Knowles K E and Weiss E A 2010 Charge Carrier Resolved Relaxation of the First Excitonic State in CdSe Quantum Dots Probed with Near-Infrared Transient Absorption Spectroscopy J. Phys. Chem. B 114 14514CrossRefGoogle Scholar
  46. 46.
    Norris D J and Bawendi M G 1995 Structure in the lowest absorption feature of CdSe quantum dots J. Chem. Phys. 103 5260CrossRefGoogle Scholar
  47. 47.
    Klimov V I 2000 Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals J. Phys. Chem. B 104 6112CrossRefGoogle Scholar
  48. 48.
    Lupo M G, Della Sala F, Carbone L, Zavelani-Rossi M, Fiore A, Lüer L, Polli D, Cingolani R, Manna L and Lanzani G 2008 Ultrafast Electron\(-\)Hole Dynamics in Core/Shell CdSe/CdS Dot/Rod Nanocrystals Nano Lett. 8 4582CrossRefGoogle Scholar
  49. 49.
    Yu P, Nedeljkovic J M, Ahrenkiel P A, Ellingson R J and Nozik A J 2004 Size Dependent Femtosecond Electron Cooling Dynamics in CdSe Quantum Rods Nano Lett. 4 1089CrossRefGoogle Scholar
  50. 50.
    He J, Zhong H and Scholes G D 2010 Electron-Hole Overlap Dictates the Hole Spin Relaxation Rate in Nanocrystal Heterostructures Phys. Rev. Lett. 105 046601CrossRefGoogle Scholar
  51. 51.
    Scholes G D, Kim J, Wong C Y, Huxter V M, Nair P S, Fritz K P and Kumar S 2006 Nanocrystal Shape and the Mechanism of Exciton Spin Relaxation Nano Lett. 6 1765CrossRefGoogle Scholar
  52. 52.
    Graham M W, Ma Y and Fleming G R 2008 Femtosecond Photon Echo Spectroscopy of Semiconducting Single-Walled Carbon Nanotubes Nano Lett. 8 3936CrossRefGoogle Scholar
  53. 53.
    Salvador M R, Sreekumari Nair P, Cho M and Scholes G D 2008 Interaction between excitons determines the non-linear response of nanocrystals Chem. Phys. 350 56CrossRefGoogle Scholar
  54. 54.
    Wong C Y and Scholes G D 2011 Biexcitonic Fine Structure of CdSe Nanocrystals Probed by Polarization-Dependent Two-Dimensional Photon Echo Spectroscopy J. Phys. Chem. A 115 3797CrossRefGoogle Scholar
  55. 55.
    Turner D B, Hassan Y and Scholes G D 2012 Exciton Superposition States in CdSe Nanocrystals Measured Using Broadband Two-Dimensional Electronic Spectroscopy Nano Lett. 12 880CrossRefGoogle Scholar
  56. 56.
    Nagasawa Y, Watanabe A, Takikawa H and Okada T 2003 Solute Dependence of Three Pulse Photon Echo Peak Shift Measurements in Methanol Solution J. Phys. Chem. A 107 632CrossRefGoogle Scholar
  57. 57.
    Xu Q, Scholes G D, Yang M and Fleming G R 1999 Probing Solvation and Reaction Coordinates of Ultrafast Photoinduced Electron-Transfer Reactions Using Nonlinear Spectroscopies: Rhodamine 6G in Electron-Donating Solvents J. Phys. Chem. A 103 10348CrossRefGoogle Scholar
  58. 58.
    Bürsing H, Ouw D, Kundu S and Vöhringer P 2001 Probing solvation dynamics in liquid water and at phospholipid/water interfaces with femtosecond photon-echo spectroscopies Phys. Chem. Chem. Phys. 3 2378CrossRefGoogle Scholar
  59. 59.
    Parkinson D Y, Lee H and Fleming G R 2007 Measuring Electronic Coupling in the Reaction Center of Purple Photosynthetic Bacteria by Two-Color, Three-Pulse Photon Echo Peak Shift Spectroscopy J. Phys. Chem. B 111 7449CrossRefGoogle Scholar
  60. 60.
    Salvador M R, Graham M W and Scholes G D 2006 Exciton-phonon coupling and disorder in the excited states of CdSe colloidal quantum dots J. Chem. Phys. 125 184709CrossRefGoogle Scholar
  61. 61.
    Zhang W M, Meier T, Chernyak V and Mukamel S 1998 Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes J. Chem. Phys. 108 7763CrossRefGoogle Scholar
  62. 62.
    Jimenez R, Van Mourik F, Yu J Y and Fleming G R 1997 Three-Pulse Photon Echo Measurements on LH1 and LH2 Complexes of Rhodobacter sphaeroides: A Nonlinear Spectroscopic Probe of Energy Transfer J. Phys. Chem. B 101 7350CrossRefGoogle Scholar
  63. 63.
    Meier T, Chernyak V and Mukamel S 1997 Femtosecond photon echoes in molecular aggregates J. Chem. Phys. 107 8759CrossRefGoogle Scholar
  64. 64.
    McKimmie L J, Lincoln C N, Jasieniak J and Smith T A 2009 Three-Pulse Photon Echo Peak Shift Measurements of Capped CdSe Quantum Dots J. Phys. Chem. C 114 82CrossRefGoogle Scholar
  65. 65.
    Gong S, Yao D, Jiang H and Xiao H 2008 Parameter-dependent photon echo induced in CdSe/ZnS quantum dot quantum well Phys. Lett. A  372 3325CrossRefGoogle Scholar
  66. 66.
    Colonna A E, Yang X and Scholes G D 2005 Photon echo studies of biexcitons and coherences in colloidal CdSe quantum dots Phys. Stat. Sol. (b) 242 990CrossRefGoogle Scholar
  67. 67.
    Mittleman D M, Schoenlein R W, Shiang J J, Colvin V L, Alivisatos A P and Shank C V 1994 Quantum size dependence of femtosecond electronic dephasing and vibrational dynamics in CdSe nanocrystals Phys. Rev. B 49 14435CrossRefGoogle Scholar
  68. 68.
    Takemoto K, Ikezawa M and Masumoto Y 2003 Low-temperature dephasing mechanism of very small quantum dots: the role of confined phonons and surrounding matrices Phys. Stat. Sol. (c)  0 1279CrossRefGoogle Scholar
  69. 69.
    Masumoto Y, Ikezawa M, Hyun B, Takemoto K and Furuya M 2001 Homogeneous Width of Confined Excitons in Quantum Dots at Very Low Temperatures Phys. Stat. Sol. (b) 224 613CrossRefGoogle Scholar
  70. 70.
    Scholes G D 2004 Selection rules for probing biexcitons and electron spin transitions in isotropic quantum dot ensembles J. Chem. Phys. 121 10104CrossRefGoogle Scholar
  71. 71.
    Mukamel S, Piryatinski A and Chernyak V 1999 Two-Dimensional Raman Echoes: Femtosecond View of Molecular Structure and Vibrational Coherence Acc. Chem. Res. 32 145CrossRefGoogle Scholar
  72. 72.
    Hannaford P 2005 In Femtosecond laser spectroscopy (New York: Springer)CrossRefGoogle Scholar
  73. 73.
    Aue W P, Bartholdi E and Ernst R R 1976 Two-dimensional spectroscopy. Application to nuclear magnetic resonance J. Chem. Phys. 64 2229CrossRefGoogle Scholar
  74. 74.
    Mukamel S 1995 In Principles of Nonlinear Optical Spectroscopy (New York: Oxford University Press)Google Scholar
  75. 75.
    Alivisatos A P, Harris A L, Levinos N J, Steigerwald M L and Brus L E 1988 Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum J. Chem. Phys. 89 4001CrossRefGoogle Scholar
  76. 76.
    Klimov V I, McBranch D W, Leatherdale C A and Bawendi M G 1999 Electron and hole relaxation pathways in semiconductor quantum dots Phys. Rev. B 60 13740CrossRefGoogle Scholar
  77. 77.
    Salvador M R, Hines M A and Scholes G D 2003 Exciton–bath coupling and inhomogeneous broadening in the optical spectroscopy of semiconductor quantum dots J. Chem. Phys. 118 9380CrossRefGoogle Scholar
  78. 78.
    Klimov V, Bolivar P H and Kurz H 1996 Ultrafast carrier dynamics in semiconductor quantum dots Phys. Rev. B 53 1463CrossRefGoogle Scholar
  79. 79.
    Efros A L, Kharchenko V and Rosen M 1995 Breaking the phonon bottleneck in nanometer quantum dots: Role of Auger-like processes Solid State Commun. 93 281CrossRefGoogle Scholar
  80. 80.
    Thomas D and Michael F 2007 In Coherent Vibrational Dynamics (New York: CRC Press)Google Scholar
  81. 81.
    Sagar D M, Cooney R R, Sewall S L, Dias E A, Barsan M M, Butler I S and Kambhampati P 2008 Size dependent, state-resolved studies of exciton-phonon couplings in strongly confined semiconductor quantum dots Phys. Rev. B 77 235321CrossRefGoogle Scholar
  82. 82.
    Klimov V I and McBranch D W 1998 Femtosecond 1P-to-1S Electron Relaxation in Strongly Confined Semiconductor Nanocrystals Phys. Rev. Lett. 80 4028CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations