Journal of Chemical Sciences

, 130:139 | Cite as

In search of stable visible light absorbing photocatalysts: gold nanoclusters\(^{\S }\)

  • Barnali Mondal
  • Mohan Raj Anthony Raj
  • V RamamurthyEmail author
Regular Article



Photochemical reactions are beginning to play an important role in the synthesis of complex organic molecules. The impetus to employ light initiated photoreactions as a synthetic tool derives from the fact that these reactions require no reagents except light. The abundance of sunlight has prompted the chemists to search for the visible light absorbing sensitizers (catalysts) to initiate the desired reactions. Our goal in this context is to develop stable and readily available catalysts that would function under sunlight. In this manuscript, we present the results of our experiments with gold nanoclusters (AuNCs) as a visible light absorbing catalysts. AuNCs absorb and emit in the visible region, soluble in water and transfers electron to suitable acceptors. Employing a series of acceptors we found that excited AuNC can transfer one electron to any acceptor whose reduction potential is above −1.1 eV. In the excited state, AuNC does not accept electrons. Also, it did not serve as an energy transfer sensitizer even with molecular oxygen. We are optimistic that AuNP and AuNC could be developed into a stable and water-soluble visible light absorbing photocatalysts to perform useful photoreactions.

Graphical Abstract

SYNOPSIS In the context of visible light photocatalysis gold nanoclusters upon light, absorption was found to transfer electron to acceptors whose reduction potential is above −1.1 eV. AuNC has limited value as electron transfer sensitizers in photochemical reactions.


Nanoclusters photocatalysis electron transfer emission quenching visible light photocatalysis 



V.R. is thankful to the National Science Foundation (CHE-1807729), USA for financial support.

Supplementary material

12039_2018_1553_MOESM1_ESM.pdf (2.4 mb)
Supplementary material 1 (pdf 2407 KB)


  1. 1.
    Yoon T P 2016 Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis Acc. Chem. Res. 49 2307CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Ramamurthy V and Sivaguru J 2016 Supramolecular Photochemistry as a Synthetic Tool: Photocycloaddition Chem. Rev. 116 9914CrossRefGoogle Scholar
  3. 3.
    Prier C K, Rankic D A and MacMillan D W C 2013 Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis Chem. Rev. 113 5322CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Turro N J, Ramamurthy V and Scaiano J C 2010 Modern Molecular Photochemistry of Organic Molecules (Sausalito CA: University Science Books)Google Scholar
  5. 5.
    Katz E and Willner I 2004 Integrated Nanoparticle–Biomolecule Hybrid Systems: Synthesis Properties and Applications Angew. Chem. Int. Ed. 43 6042CrossRefGoogle Scholar
  6. 6.
    Giljohann D A, Seferos D S, Daniel W L, Massich M D, Patel P C and Mirkin C A 2010 Gold Nanoparticles for Biology and Medicine Angew. Chem. Int Ed. 49 3280CrossRefGoogle Scholar
  7. 7.
    Nguyen D T, Kim D-J and Kim K-S 2011 Controlled Synthesis and Biomolecular Probe Application of Gold Nanoparticles Micron 42 207CrossRefGoogle Scholar
  8. 8.
    Perez-Juste J, Pastoriza-Santos I, Liz-Marzan L M and Mulvaney P 2005 Gold Nanorods: Synthesis Characterization and Applications Coord. Chem. Rev. 249 1870CrossRefGoogle Scholar
  9. 9.
    Eustis S and EI-Sayed M A 2006 Why Gold Nanoparticles Are More Precious Than Pretty Gold: Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes Chem. Soc. Rev. 35 209CrossRefGoogle Scholar
  10. 10.
    Liz-Marzan L M 2006 Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles Langmuir 22 32CrossRefGoogle Scholar
  11. 11.
    Daniel M-C and Astruc D 2003 Gold Nanoparticles: Assembly Supramolecular Chemistry Quantum-Size-Related Properties and Applications toward Biology Catalysis and Nanotechnology Chem. Rev. 104 293CrossRefGoogle Scholar
  12. 12.
    Zheng J, Nicovich P R and Dickson R M 2007 Highly Fluorescent Noble-Metal Quantum Dots Annu. Rev. Phys. Chem. 58 409CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Shang L, Dong S and Nienhaus G U 2011 Ultra-Small Fluorescent Metal Nanoclusters: Synthesis and Biological Applications Nano Today 6 401CrossRefGoogle Scholar
  14. 14.
    Jin R 2010 Quantum Sized Thiolate-Protected Gold Nanoclusters Nanoscale 2 343CrossRefGoogle Scholar
  15. 15.
    Templeton A C, Wuelfing W P and Murray R W 2000 Monolayer-Protected Cluster Molecules Acc. Chem. Res. 33 27CrossRefGoogle Scholar
  16. 16.
    Yau S H, Varnavski O and Goodson 2013 T An Ultrafast Look at Au Nanoclusters Acc. Chem. Res. 46 1506CrossRefGoogle Scholar
  17. 17.
    Kohlmann O, Steinmetz W E, Mao X-A, Wuelfing W P, Templeton A C, Murray R W and Johnson C S 2001 Nmr Diffusion Relaxation and Spectroscopic Studies of Water Soluble Monolayer-Protected Gold Nanoclusters J. Phys. Chem. B 105 8801CrossRefGoogle Scholar
  18. 18.
    Parker J F, Fields-Zinna C A and Murray R W 2010 The Story of a Monodisperse Gold Nanoparticle: \(\text{ Au }_{25}\text{ l }_{18}\) Acc. Chem. Res. 43 1289CrossRefGoogle Scholar
  19. 19.
    Huang T and Murray R W 2001 Visible Luminiscence of Water-Soluble Monolayer-Protected Gold Clusters J. Phys. Chem. B 105 12498CrossRefGoogle Scholar
  20. 20.
    Yau S H, Varnavski O, Gilbertson J D, Chandler B, Ramakrishna G and Goodson T 2010 Ultrafast Optical Study of Small Gold Monolayer Protected Clusters: A Closer Look at Emission J. Phys. Chem. C 114 15979CrossRefGoogle Scholar
  21. 21.
    Link S, Beeby A, FitzGerald S, EI-Sayed M A, Schaaff T G and Whetten R L 2002 Visible to Infrared Luminescence from a 28-Atom Gold Cluster J. Phys. Chem. B 106 3410CrossRefGoogle Scholar
  22. 22.
    Govindaraju S, Ankireddy S R, Viswanath B, Kim J and Yun K 2017 Fluorescent Gold Nanocluster for Selective Detection of Dopamine in Cerebrospinal Fluid Sci. Rep. 7 1CrossRefGoogle Scholar
  23. 23.
    Luo Z, Yuan X, Yu Y, Zhang Q, Leong D T, Lee J Y and Xie J 2012 From Aggregation-Induced Emission of Au(I)-Thiolate Complexes to Ultrabright Au(0)@Au(I)-Thiolate Core-Shell Nanoclusters J. Am. Chem. Soc. 134 16662CrossRefGoogle Scholar
  24. 24.
    Yuan X, Zhang B, Luo Z, Yao Q, Leong D T, Yan N and Xie J 2014 Balancing the Rate of Cluster Growth and Etching for Gram-Scale Synthesis of Thiolate-Protected Au\(_{25 }\)Nanoclusters with Atomic Precision Angew. Chem. Int. Ed. 53 1CrossRefGoogle Scholar
  25. 25.
    Diaz S A, Hastman D A, Medintz I L and Oh E 2017 Understanding Energy Transfer with Luminescent Gold Nanoclusters: A Promising New Transduction Modality for Biorelated Applications J. Mater. Chem. B 2017 7907CrossRefGoogle Scholar
  26. 26.
    Oh E, Huston A L, Shabaev A, Efros A, Currie M, Susumu K, Bussmann K, Goswami R, Fatemi F K and Medintz I L 2016 Energy Transfer Sensitization of Luminescent Gold Nanoclusters: More Than Just the Classical Forster Mechanism Sci. Rep. 6 1Google Scholar
  27. 27.
    Chen Y-S and Kamat P V 2014 Glutathione-Capped Gold Nanoclusters as Photosensitizers Visible Light-Induced Hydrogen Generation in Neutral Water J. Am. Chem. Soc. 136 6075CrossRefGoogle Scholar
  28. 28.
    Stamplecoskie K G, Chen Y-S and Kamat P V 2014 Excited-State Behavior of Luminescent Glutathione-Protected Gold Clusters J. Phys. Chem. C 118 1370CrossRefGoogle Scholar
  29. 29.
    Chen Y-S, Choi H and Kamat P V 2013 Metal-Cluster-Sensitized Solar Cells A New Class of Thiolated Gold Sensitizers Delivering Efficiency Greater Than 2% J. Am. Chem. Soc. 135 8822CrossRefGoogle Scholar
  30. 30.
    Hasobe T, Imahori H, Kamat P V, Ahn T K, Kim S K, Kim D, Fujimoto A, Hirakawa T and Fukuzumi S 2005 Photovoltaic Cells Using Composite Nanoclusters of Porphyrins and Fullerenes with Gold Nanoparticles J. Am. Chem. Soc. 127 1216CrossRefGoogle Scholar
  31. 31.
    Fan W and Leung M K H 2016 Recent Development of Plasmonic Resonance-Based Photocatalysis and Photovoltaics for Solar Utilization Molecules 21 180/1Google Scholar
  32. 32.
    Kawasaki H, Kumar S, Li G, Zeng C, Kauffman D R, Yoshimato J, Iwasaki Y and Jin R 2014 Generation of Singlet Oxygen by Photoexcited Au\(_{25}\)(Sr)\(_{18 }\) Clusters Chem. Mater. 26 2777CrossRefGoogle Scholar
  33. 33.
    Ipe B I, Thomas K G, Barazzouk S, Hotchandani S and Kamat P V 2002 Photoinduced Charge Separation in a Fluorophore–Gold Nanoassembly J. Phys. Chem. B 106 18CrossRefGoogle Scholar
  34. 34.
    Thomas K G and Kamat P V 2000 Making Gold Nanoparticles Glow: Enhanced Emission from a Surface-Bound Fluoroprobe J. Am. Chem. Soc. 122 2655CrossRefGoogle Scholar
  35. 35.
    Thomas K G and Kamat P V 2003 Chromophore-Functionalized Gold Nanoparticles Acc. Chem. Res. 36 888CrossRefGoogle Scholar
  36. 36.
    Borak J B, Lopez-Sola S and Falvey D E 2008 Photorelease of Carboxylic Acids Mediated by Visible-Light-Absorbing Gold-Nanoparticles Org. Lett. 10 457CrossRefGoogle Scholar
  37. 37.
    Mohan Raj A and Ramamurthy V 2017 Volume Conserving Geometric Isomerization of Encapsulated Azobenzenes in Ground- and Excited States and as Radical Ion Org. Lett. 19 6116CrossRefGoogle Scholar
  38. 38.
    Ueno K and Misawa H Surface 2013 Plasmon-Enhanced Photochemical Reactions J. Photochem. Photobiol. C 15 31CrossRefGoogle Scholar
  39. 39.
    Scaiano J C and Stamplecoskie K 2013 Can Surface Plasmon Fields Provide a New Way to Photosensitize Organic Photoreactions? From Designer Nanoparticles to Custom Applications J. Phys. Chem. Lett. 4 1177CrossRefGoogle Scholar
  40. 40.
    Sarina S, Waclawik E R and Zhu H 2013 Photocatalysis on Supported Gold and Silver Nanoparticles under Ultraviolet and Visible Light Irradiation Green Chem. 15 1814CrossRefGoogle Scholar
  41. 41.
    Zhou N, López-Puente V, Wang Q, Polavarapu L, Pastoriza-Santos I and Xu Q-H 2015 Plasmon-Enhanced Light Harvesting: Applications in Enhanced Photocatalysis Photodynamic Therapy and Photovoltaics RSC Adv. 5 29076CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of MiamiCoral Cables, MiamiUSA

Personalised recommendations