Journal of Chemical Sciences

, 130:138 | Cite as

Probing the bilayer-monolayer switching of capping agents on Au nanorods and its interaction with guest molecules\(^{\S }\)

  • Jatish Kumar
  • K George ThomasEmail author
Regular Article


The anisotropic features of Au nanorods make them an attractive nanoscale precursor for the design of higher order nanostructured materials. However, the mode of interaction of various molecular systems on Au nanorods is not well-understood. In the present study, we have employed isothermal titration calorimetry and surface-enhanced Raman scattering for understanding various types of interactions of functional molecules on the surface of gold nanorods. The binding of thiol-bearing analyte molecules is effective with the surface of gold nanorods in acetonitrile-rich solvents and found to be weak in an aqueous medium. The effective interaction of thiol-bearing analyte molecules on nanorods is facilitated by the breakdown of cetyltrimethylammonium bromide bilayer to a monolayer in organic-rich solvent systems, thereby resulting in appreciable signals in isothermal titration calorimetry and surface-enhanced Raman spectra. The electrostatic interaction of analyte molecule is mainly driven by the charge reversal on the surface of Au nanorods on switching the solvent from aqueous to organic medium. Thus, based on isothermal titration calorimetry and surface-enhanced Raman scattering investigations, it is established that the microheterogeneous environment around the Au nanorods plays a crucial role in driving the interaction of analyte molecules.

Graphical Abstract:

SYNOPSIS Cetyltrimethylammonium bromide on Au nanorod exists as a bilayer in water and as a monolayer in aqueous-organic medium, which in turn influences the surface charge and plays a crucial role in driving the substrate-analyte interactions.


Isothermal titration calorimetry surface-enhanced Raman scattering gold nanorods electrostatic interactions 



JK acknowledges the Council of Scientific & Industrial Research (CSIR), India, for the fellowship. KGT acknowledges the Department of Science and Technology (DST Nanomission Project; SR/NM/NS-23/2016), Government of India for financial support and the J. C. Bose National Fellowship of DST.


  1. 1.
    Li X, Zhu J and Wei B 2016 Hybrid Nanostructures of Metal/Two-Dimensional Nanomaterials for Plasmon-Enhanced Applications Chem. Soc. Rev. 45 3145CrossRefGoogle Scholar
  2. 2.
    Thomas R, Kumar J, George J, Shanthil M, Naidu G N, Swathi R S and Thomas K G 2018 Coupling of Elementary Electronic Excitations: Drawing Parallels Between Excitons and Plasmons J. Phys. Chem. Lett. 9 919CrossRefGoogle Scholar
  3. 3.
    Motl N E, Smith A F, DeSantisa C J and Skrabalak S E 2014 Engineering plasmonic metal colloids through composition and structural design Chem. Soc. Rev. 43 3823CrossRefGoogle Scholar
  4. 4.
    Wu X, Xu L, Liu L, Ma W, Yin H, Kuang H, Wang L, Xu C and Kotov N A 2013 Unexpected Chirality of Nanoparticle Dimers and Ultrasensitive Chiroplasmonic Bioanalysis J. Am. Chem. Soc. 135 18629CrossRefGoogle Scholar
  5. 5.
    Wu X, Hao C, Kumar J, Kuang H, Kotov N A, Liz-Marzán L M and Xu C 2018 Environmentally responsive plasmonic nanoassemblies for biosensing Chem. Soc. Rev. 47 4677CrossRefGoogle Scholar
  6. 6.
    Hiromi K, Petrovykh D Y, Tarlov M J and Whitman L J 2003 Base-Dependent Competitive Adsorption of Single-Stranded DNA on Gold J. Am. Chem. Soc. 125 9014CrossRefGoogle Scholar
  7. 7.
    Demers L M, Ostblom M, Zhang H, Jang N H, Liedberg B and Mirkin C A 2002 Thermal Desorption Behavior and Binding Properties of DNA Bases and Nucleosides on Gold J. Am. Chem. Soc. 124 11248CrossRefGoogle Scholar
  8. 8.
    Liz-Marzán L M and Grzelczak M 2017 Growing Anisotropic Crystals at the Nanoscale Science 356 1120CrossRefGoogle Scholar
  9. 9.
    Chen H, Shao L, Li Q and Wang J 2013 Gold Nanorods and their Plasmonic Properties Chem. Soc. Rev. 42 2679CrossRefGoogle Scholar
  10. 10.
    Weiner R G, Kunz M R and Skrabalak S E 2015 Seeding a New Kind of Garden: Synthesis of Architecturally Defined Multimetallic Nanostructures by Seed-Mediated Co-Reduction Acc. Chem. Res. 48 2688CrossRefGoogle Scholar
  11. 11.
    Baier G, Costa C, Zeller A, Baumann D, Sayer C, Araujo P H H, Mailander V, Musyanovych A and Landfester K 2011 BSA Adsorption on Differently Charged Polystyrene Nanoparticles using Isothermal Titration Calorimetry and the Influence on Cellular Uptake Macromol. Biosci. 11 628CrossRefGoogle Scholar
  12. 12.
    Krishnan R and Gopidas K R 2011 \(\beta \)-Cyclodextrin as an End-to-End Connector J. Phys. Chem. Lett. 2 2094CrossRefGoogle Scholar
  13. 13.
    Trani J M D, Moitessier N and Mittermaier A K 2017 Measuring Rapid Time-Scale Reaction Kinetics Using Isothermal Titration Calorimetry Anal. Chem. 89 7022CrossRefGoogle Scholar
  14. 14.
    You C-C, Agasti S S and Rotello V M 2008 Isomeric Control of Protein Recognition with Amino Acid-and Dipeptide-Functionalized Gold Nanoparticles Chem. Eur. J. 14 143CrossRefGoogle Scholar
  15. 15.
    Lang B 2010 Hybridization Thermodynamics of DNA Bound to Gold Nanoparticles J. Chem. Thermodyn. 42 1435CrossRefGoogle Scholar
  16. 16.
    Gourishankar A, Shukla S, Ganesh K N and Sastry M 2004 Isothermal Titration Calorimetry Studies on the Binding of DNA Bases and PNA Base Monomers to Gold Nanoparticles J. Am. Chem. Soc. 126 13186CrossRefGoogle Scholar
  17. 17.
    Varghese N, Vivekchand S R C, Govindaraj A and Rao C N R 2008 A calorimetric investigation of the assembly of gold nanorods to form necklaces Chem. Phys. Lett. 450 340CrossRefGoogle Scholar
  18. 18.
    Moore D E, Goode D R, Seney C S and Boatwright J M 2016 Isothermal Titration Calorimetry Can Provide Critical Thinking Opportunities J. Chem. Edu. 93 304CrossRefGoogle Scholar
  19. 19.
    Dam T K and Brewer C F 2002 Thermodynamic Studies of Lectin-Carbohydrate Interactions by Isothermal Titration Calorimetry Chem. Rev. 102 387CrossRefGoogle Scholar
  20. 20.
    Campoy A V, Ohtaka H, Nezami A, Muzammil S and Freire E 2004 Isothermal Titration Calorimetry Curr. Protoc. Cell Biol. 23 17.8.1Google Scholar
  21. 21.
    Kumar J and Thomas K G 2011 Surface-Enhanced Raman Spectroscopy: Investigations at the Nanorod Edges and Dimer Junctions J. Phys. Chem. Lett. 2 610CrossRefGoogle Scholar
  22. 22.
    Zrimsek A B, Chiang N, Mattei M, Zaleski S, McAnally M O, Chapman C T, Henry A-I, Schatz G C and Van Duyne R P 2017 Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy Chem. Rev. 117 7583CrossRefGoogle Scholar
  23. 23.
    Nie S and Emory S R 1997 Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering Science 275 1102CrossRefGoogle Scholar
  24. 24.
    Kim F, Song J H and Yang P 2002 Photochemical Synthesis of Gold Nanorods J. Am. Chem. Soc. 124 14316CrossRefGoogle Scholar
  25. 25.
    Joshi H, Shirude P S, Bansal V, Ganesh K N and Sastry M 2004 Isothermal Titration Calorimetry Studies on the Binding of Amino Acids to Gold Nanoparticles J. Phys. Chem. B 108 11535CrossRefGoogle Scholar
  26. 26.
    Rautaray D, Mandal S and Sastry M 2005 Synthesis of Hydroxyapatite Crystals Using Amino Acid-Capped Gold Nanoparticles as a Scaffold Langmuir 21 5185CrossRefGoogle Scholar
  27. 27.
    Chao Y, Zhou Q, Li Y, Yan Y, Wu Y and Zheng J 2007 Potential Dependent Surface Enhanced Raman Scattering of 4-Mercaptopyridine on Electrochemically Roughened Silver Electrodes J. Phys. Chem. C 111 16990CrossRefGoogle Scholar
  28. 28.
    Pramod P and Thomas K G 2008 Plasmon Coupling in Dimers of Au Nanorods Adv. Mater. 20 4300CrossRefGoogle Scholar
  29. 29.
    Gao J, Bender C M and Murphy C J 2003 Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution Langmuir 19 9065CrossRefGoogle Scholar
  30. 30.
    Zheng J, Li X, Gu R and Lu T 2002 Comparison of the Surface Properties of the Assembled Silver Nanoparticle Electrode and Roughened Silver Electrode J. Phys. Chem. B 106 1019CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Vithura, ThiruvananthapuramIndia
  2. 2.CSIR –National Institute for Interdisciplinary Science and TechnologyThiruvananthapuramIndia

Personalised recommendations