Journal of Chemical Sciences

, 130:134 | Cite as

Self-assembly and photoinduced electron transfer in a donor- \(\upbeta \)-cyclodextrin-acceptor supramolecular system\(^{\S }\)

  • Retheesh Krishnan
  • Sumesh Babu Krishnan
  • Bijitha Balan
  • Karical Raman GopidasEmail author
Regular Article


Equimolar amounts of native \(\upbeta \)-cyclodextrin (\({\varvec{\upbeta }}\)-CD), pyrene-linked adamantane (PYAD) and tert-butylpyromellitic diimide (PMDI) when dissolved in water self-assembled to form the supramolecular donor-acceptor system \(\mathbf{PYAD}{\sqsupset }{\varvec{\upbeta }}\)-\(\mathbf{CD}{\succ }\mathbf{PMDI}\). The high affinity of adamantane derivatives for inclusion binding in the \({\varvec{\upbeta }}\)-CD cavity and the propensity of PMDI to undergo rim-binding at the narrow rim of \(\upbeta \)-CD led to the formation of \(\mathbf{PYAD}{\sqsupset }{\varvec{\upbeta }}\)-\(\mathbf{CD}{\succ }{} \mathbf{PMDI}\). The ternary complex \(\mathbf{PYAD}{\sqsupset }{\varvec{\upbeta }}\)-\(\mathbf{CD}{\succ }{} \mathbf{PMDI}\) was thoroughly characterized using various spectroscopic techniques. \(\upbeta \)-CD performs three functions in the self-assembled complex: (1) encapsulate the adamantane unit and keep the pyrene (PY) moiety above the secondary rim, (2) rim-bind PMDI and keep it at the primary rim, and (3) act as a spacer between pyrene and PMDI. Thus, the ternary complex can function as a donor-spacer-acceptor system capable of undergoing photoinduced electron transfer (PET). Upon excitation of the pyrene moiety in \(\mathbf{PYAD}{\sqsupset }{\varvec{\upbeta }}\)-\(\mathbf{CD}{\succ }{} \mathbf{PMDI}\) an electron is transferred from the excited pyrene to the PMDI ground state. Steady state and time resolved fluorescence experiments were carried out to study the PET in \(\mathbf{PYAD}{\sqsupset }{\varvec{\upbeta }}\)-\(\mathbf{CD}{\succ }{} \mathbf{PMDI}\). Existence of the ternary system and PET processes taking place within it are further supported by laser flash photolysis experiments.

Graphical abstract \(\upbeta \)-CD assembles donor pyrene through inclusion binding and acceptor pyromellitic diimide through rim-binding. Fluorescence intensity and lifetime quenching suggested photoinduced electron transfer from pyrene to pyromellitic diimide.


Cyclodextrins donor–acceptor systems inclusion binding PET supramolecular assembly 



The authors thank DAE-BRNS (No. 2007/37/37/BRNS), and CSIR for financial support. R.K. and S. B. K. are grateful to CSIR for fellowships. This is contribution number NIIST-PPG 348.

Supplementary material

12039_2018_1535_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (pdf 1473 KB)


  1. 1.
    Bottari G, Trukhina O, Ince M and Torres T 2012 Towards Artificial Photosynthesis: Supramolecular Donor-Acceptor Porphyrin and Phthalocyanine/Carbon Nanostructure Ensembles Coord. Chem. Rev. 256 2453CrossRefGoogle Scholar
  2. 2.
    D’Souza F and Ito O 2009 Supramolecular Donor – Acceptor Hybrids of Porphyrins/Phtalocyanines with Fullerenes/Carbon Nanotubes: Electron Transfer Sensing, Switching, and Catalytic Applications Chem. Commun. 4913Google Scholar
  3. 3.
    Hasobe T, Fukuzumi S and Kamat P V 2006 Hierarchical Assembly of Porphyrins and Fullerenes for Solar Cells Interface 15 47Google Scholar
  4. 4.
    Das A, Jha A, Gera R and Dasgupta J 2015 Photoinduced Charge Transfer State Probes the Dynamic Water Interactions with Metal – Organic Nanocages J. Phys. Chem. C 119 21234CrossRefGoogle Scholar
  5. 5.
    Das A and Ghosh S 2014 Supramolecular Assemblies by Charge – Transfer Interactions between Donor and Acceptor Chromophores Angew. Chem. Int. Ed. 53 2038CrossRefGoogle Scholar
  6. 6.
    D’Souza F, Amin A, N, El-Kouhly M E, Subbaiyan N K, Zandler M E and Fukuzumi S 2012 Control over Photoinduced Energy and Electron Transfer in Supramolecular Polyads of Covalently linked azaBODIPY-Bisporphyrin ‘Molecular Clip’ Hosting Fullerene J. Am. Chem. Soc. 134 654CrossRefGoogle Scholar
  7. 7.
    Bikram C K C, Subbaiyan N K and D’Souza F 2012 Supramolecular Donor – Acceptor Assembly Derived from Tetracarbazole – Zinc Phthalocyanine Coordinated to Fullerene: Design, Synthesis, Photochemical, and Photoelectrochemical Studies J. Phys. Chem. C 116 11964CrossRefGoogle Scholar
  8. 8.
    Takai A, Chkounda M, Eggenspiller A, Gros C P, Lachkar M, Barbe J-M and Fukuzumi S 2010 Efficient Photoinduced Electron Transfer in a Porphyrin Tripod-Fullerene Supramolecular Complex via \(\uppi {\text{- }}\uppi \) interactions in Nonpolar Media J. Am. Chem. Soc. 132 4477CrossRefGoogle Scholar
  9. 9.
    Honda T, Nakanishi T, Ohkubo K, Kojima T and Fukuzumi S 2010 Structure and Photoinduced Electron Transfer Dynamics of a Series of Hydrogen-Bonded Supramolecular Complexes Composed of Electron Donors and a Saddle-Distorted Diprotonated Porphyrin J. Am. Chem. Soc. 132 10155CrossRefGoogle Scholar
  10. 10.
    Gayathri S S, Wielopolski M, Perez E M, Fernandez G, Sanchez L, Viruela R, Orti E, Guldi D M and Martin N 2009 Discrete Supramolecular Donor–Acceptor Complexes Angew. Chem. Int. Ed. 48 815CrossRefGoogle Scholar
  11. 11.
    Kira A, Umeyama T, Matano Y, Yoshida K, Isoda S, Park J K, Kim D and Imahori H 2009 Supramolecular Donor-Acceptor Heterojunctions by Vertical Stepwise Assembly of Porphyrins and Coordination-Bonded Fullerene Arrays for Photocurrent Generation J. Am. Chem. Soc. 131 3198CrossRefGoogle Scholar
  12. 12.
    Kuramochi Y, Satake A, Itou M, Ogawa K, Araki Y, Ito O and Kobuke Y 2008 Light-Harvesting Supramolecular Porphyrin Macrocycle Accommodating a Fullerene–Tripodal Ligand Chem. Eur. J. 14 2827CrossRefGoogle Scholar
  13. 13.
    Wang Y B and Lin Z Y 2003 Supramolecular Interactions between Fullerenes and Porphyrins J. Am. Chem. Soc. 125 6072CrossRefGoogle Scholar
  14. 14.
    D’Souza F, Deviprasad G R, Zandler M E, Hoang V T, Klykov A, VanStipdonk M, Perera A, El-Khouly M E, Fujitsuka M and Ito O 2002 Spectroscopic, Electrochemical, and Photochemical Studies of Self-Assembled via Axial Coordination Zinc Porphyrin-Fulleropyrrolidine Dyads J. Phys. Chem. A 106 3243CrossRefGoogle Scholar
  15. 15.
    Crini G A 2014 History of Cyclodextrin Chem. Rev. 114 10940CrossRefGoogle Scholar
  16. 16.
    Chen G and Jiang M 2011 Cyclodextrin – Based Inclusion Complexation Bridging Supramolecular Chemistry and Macromolecular Self-Assembly Chem. Soc. Rev. 40 2254CrossRefGoogle Scholar
  17. 17.
    Rekharsky M V and Inoue Y 1998 Complexation Thermodynamics of Cyclodextrins Chem. Rev. 98 1875CrossRefGoogle Scholar
  18. 18.
    Al-Burtomani S K S and Suliman F O 2018 Experimental and theoretical study of the inclusion complexes of epinephrine with \(\upbeta \)-cyclodextrin, 18-crown-6 and cucurbit[7]uril New J. Chem. 42 5785CrossRefGoogle Scholar
  19. 19.
    Al-Dubaili N, El-Tarabily, K and Saleh N 2018 Host-guest complexes of imazalil with cucurbit[8]uril and \(\upbeta \)-cyclodextrin and their effect on plant pathogenic fungi Sci. Rep. 8 2839CrossRefGoogle Scholar
  20. 20.
    Li H, Li F, Zhang B, Zhou X, Yu F and Sun L 2015 Visible Light – Driven Water Oxidation Promoted by Host – Guest Interaction between Photosensitizer and Catalyst with a High Quantum Efficiency J. Am. Chem. Soc. 137 4332CrossRefGoogle Scholar
  21. 21.
    Dryza V and Bieske E J 2015 Electron Injection and Energy Transfer Properties of Spiropyran – Cyclodextrin Complexes Coated onto Metal Oxide Nanoparticles: Toward Photochromic Light Harvesting J. Phys. Chem. C 119 14076CrossRefGoogle Scholar
  22. 22.
    Zhang Y-M, Chen Y, Zhuang R-J and Liu Y 2011 Supramolecular Architectures of Tetrathiafulvalene – bridged Bis (\(\upbeta \) – cyclodextrin) with Porphyrin and its Electron Transfer Behaviors Photochem. Photobiol. Sci. 10 1393CrossRefGoogle Scholar
  23. 23.
    Fukuhara G, Mori T and Inoue Y 2009 Competitive Enantiodifferentiating Anti-Markovnikov Photoaddition of Water and Methanol to 1,1 – Diphenylpropene Using A Sensitizing Cyclodextrin Host J. Org. Chem. 74 6714CrossRefGoogle Scholar
  24. 24.
    Freeman R, Finder T, Bahshi L and Willner I 2009 \(\upbeta \) – Cyclodextrin – Modified CdSe/ZnS Quantum Dots for Sensing and Chiroselective Analysis Nano. Lett. 9 2073CrossRefGoogle Scholar
  25. 25.
    Liang P, Zhang H-Y, Yu Z-L and Liu Y 2008 Solvent – Controlled Photoinduced – Electron Transfer between Porphyrin and Carbon Nanotubes J. Org. Chem. 73 2163CrossRefGoogle Scholar
  26. 26.
    Ghosh S, Mondal S K, Sahu K and Bhattacharyya K 2006 Ultrafast Electron Transfer in a Nanocavity. Dimethylaniline to Coumarin Dyes in Hydroxypropyl - \(\upgamma \) - Cyclodextrin J. Phys. Chem. A 110 13139CrossRefGoogle Scholar
  27. 27.
    Deng W, Onji T, Yamaguchi H, Ikeda N and Harada A 2006 Competitive Photoinduced Electron Transfer by the Complex Formation of Porphyrin with Cyclodextrin bearing Viologen Chem. Commun. 40 4212CrossRefGoogle Scholar
  28. 28.
    Wang Y-H, Zhu M-Z, Ding X-Y, Ye J-P, Liu L and Guo Q-X 2003 Photoinduced Electron Transfer between Mono-6-p-nitrobenzoyl-\(\upbeta \)-Cyclodextrin and Adamantanamine-Cn-porphyrins J. Phys. Chem. B 107 14087CrossRefGoogle Scholar
  29. 29.
    Haider J M, Williams R. M, De Cola L and Pikramenou Z 2003 Vectorial Control of Energy-Transfer Processes in Metallocyclodextrin Heterometallic Assemblies Angew. Chem. Int. Ed. 42 1830CrossRefGoogle Scholar
  30. 30.
    Balan B and Gopidas K R 2007 An Anthracene-Appended \(\upbeta \)-Cyclodextrin-Based Dyad: Study of Self- Assembly and Photoinduced Electron-Transfer Processes Chem. Eur. J. 13 5173CrossRefGoogle Scholar
  31. 31.
    Balan B and Gopidas K R 2006 Photoinduced Electron Transfer in \(\upalpha \)-Cyclodextrin-Based Supramolecular Dyads: A Free-Energy-Dependence Study Chem. Eur. J. 12 6701CrossRefGoogle Scholar
  32. 32.
    Balan B, Sivadas D L and Gopidas K R 2007 Interaction of Pyromellitic Diimide Derivatives with \(\upbeta \)-Cyclodextrin and Anthracene-Appended Beta-Cyclodextrin: Rimbinding vs Inclusion Complexation Org. Lett. 9 2709CrossRefGoogle Scholar
  33. 33.
    Krishnan R, Rakhi A M and Gopidas K R 2012 \(\upbeta \) Cyclodextrin-Pyromellitic Diimide Complexation. Conformational Analysis of Binary and Ternary Complex Structures by Induced Circular Dichroism and 2D NMR Spectroscopies J. Phys. Chem. C 116 25004CrossRefGoogle Scholar
  34. 34.
    Krishnan R and Gopidas K R 2011 \(\upbeta \)-Cyclodextrin as an End to End Connector J. Phys. Chem. Lett . 2 2094CrossRefGoogle Scholar
  35. 35.
    Kola S, Kim J H, Ireland R, Yeh M-L, Smith K, Guo W and Katz H E 2013 Pyromellitic Diimide – Ethylene-based Homopolymer Film as an N-Channel Organic Field-Effect Transistor Semiconductor ACS Macro. Lett. 2 664CrossRefGoogle Scholar
  36. 36.
    Guo X and Watson M D 2011 Pyromellitic Diimide-Based Donor – Acceptor Poly(phenyleneethynylene)s Macromolecules 44 6711CrossRefGoogle Scholar
  37. 37.
    Zheng Q, Huang J, Sarjeant A and Katz H E 2008 Pyromellitic Diimides: Minimal Cores for High Mobility n-Channel Transistor Semiconductors J. Am. Chem. Soc. 130 14410CrossRefGoogle Scholar
  38. 38.
    Lockard J E and Wasielewski M R 2007 Intramolecular Electron Transfer within a Covalent, Fixed-Distance Donor-Acceptor Molecule in an Ionic Liquid J. Phys. Chem. B 111 11638CrossRefGoogle Scholar
  39. 39.
    Lukas A S, Zhao Y, Miller S E and Wasielewski M R 2002 Biomimetic Electron Transfer using Low Energy Excited States: A Green Perylene-Based Analogue of Chlorophyll a J. Phys. Chem. B 106 1299CrossRefGoogle Scholar
  40. 40.
    Lukas E S, Miller S E and Wasielewski M R 2000 Femtosecond Optical Switching of Electron Transport Direction in Branched Donor-Acceptor Arrays J. Phys. Chem. B 104 931CrossRefGoogle Scholar
  41. 41.
    Sessler J L, Brown C T, O’Connor D, Springs S L, Wang R, Sathiosatham M and Hirose T 1998 A Rigid Chlorin-Naphthalene Diimide Conjugate. A Possible New Noncovalent Electron Transfer Model System J. Org. Chem. 63 7370CrossRefGoogle Scholar
  42. 42.
    Wiederrecht G P, Niemczyk M P, Svec W A and Wasielewski M R 1996 Ultrafast Photoinduced Electron Transfer in a Chlorophyll-Based Triad: Vibrationally Hot Ion Pair Intermediates and Dynamic Solvent Effects J. Am. Chem. Soc. 118 81CrossRefGoogle Scholar
  43. 43.
    Lee O P, Yiu A T, Beaujuge P M, Woo C H, Holcombe T W, Millstone J E, Douglas J D, Chen M S and Fréchet J M J 2011 Efficient Small Molecule Bulk Heterojunction Solar Cells with High Fill Factors via Pyrene-Directed Molecular Self-Assembly Adv. Mater. 23 5359CrossRefGoogle Scholar
  44. 44.
    Maligaspe E, Sandanayaka A S D, Hasobe T, Ito O and D’Souza F 2010 Sensitive Efficiency of Photoinduced Electron Transfer to Band Gaps of Semiconductive Single-Walled Carbon Nanotubes with Supramolecularly Attached Zinc Porphyrin Bearing Pyrene Glues J. Am. Chem. Soc. 132 8158CrossRefGoogle Scholar
  45. 45.
    Anh N V, Schlosser F, Groeneveld M M, van Stokkum I H M, Wurthner F and Williams R M 2009 Photoinduced Interactions in a Pyrene-Calix[4]arene-Perylene Bisimide Dye System: Probing Ground-State Conformations with Excited-State Dynamics of Charge Separation and Recombination J. Phys. Chem. C 113 18358CrossRefGoogle Scholar
  46. 46.
    Narita M, Mima S, Ogawa N and Hamada F 2001 Fluorescent Molecular Sensory System Based on Bis Pyrene-Modified \(\upgamma \)-Cyclodextrin Dimer for Steroids and Endocrine Disruptors Anal. Sci. 17 379CrossRefGoogle Scholar
  47. 47.
    Murakami H, Hohsaka T, Asshizuka Y and Sisido M 1998 Site-Directed Incorporation of p-Nitrophenylalanine into Streptavidin and Site-to-Site Photoinduced Electron Transfer from a Pyrenyl Group to a Nitrophenyl Group on the Protein Framework J. Am. Chem. Soc. 120 7520CrossRefGoogle Scholar
  48. 48.
    Ueno A, Suzuki I and Osa T 1989 Association Dimers, Excimers, and Inclusion Complexes of Pyrene-Appended \(\upgamma \)-Cyclodextrins J. Am. Chem. Soc. 111 6391CrossRefGoogle Scholar
  49. 49.
    Gelb R I, Schwartz L M and Laufer D A 1984 Adamantan-1-ylamine and Adamantan-1-ylamine Hydrochloride Complexes with Cycloamyloses J. Chem. Soc., Perkin Trans. 2 15CrossRefGoogle Scholar
  50. 50.
    Briggner L-E, Ni X -R, Tempesti F and Wadsö I 1986 Microcalorimetric Titration of \(\upbeta \)-Cyclodextrin with Adamantane-1-Carboxylate Thermochim. Acta 109 139CrossRefGoogle Scholar
  51. 51.
    Hallén D, Schön A, Shehatta I and Wadsö I 1992 Microcalorimetric Titration of \(\upalpha \)-Cyclodextrin with some Straight-chain Alkan-1-ols at 288.15, 298.15 and 308.15 K J. Chem. Soc., Faraday Trans. 88 2859CrossRefGoogle Scholar
  52. 52.
    Rekharsky M V, Mayhew M P, Goldberg R N, Ross P D, Yamashoji Y and Inoue Y 1997 Thermodynamic and Nuclear Magnetic Resonance Study of the Reactions of \(\upalpha \)- and \(\upbeta \)-Cyclodextrin with Acids, Aliphatic Amines, and Cyclic Alcohols J. Phys. Chem. B 101 87CrossRefGoogle Scholar
  53. 53.
    Ross P D and Rekharsky M V 1996 Thermodynamics of Hydrogen Bond and Hydrophobic Interactions in Cyclodextrin Complexes Biophys. J. 71 2144CrossRefGoogle Scholar
  54. 54.
    Breslow R, Czamiecki M F, Emert J and Hamaguchi H 1980 Improved Acylation Rates within Cyclodextrin Complexes from Flexible Capping of Cyclodextrin and from Adjustment of Substrate Geometry J. Am. Chem. Soc. 102 762CrossRefGoogle Scholar
  55. 55.
    Emert J and Breslow R 1975 Modification of Cavity of Beta-Cyclodextrin by Flexible Capping J. Am. Chem. Soc. 97 670CrossRefGoogle Scholar
  56. 56.
    Schneider H J, Hacket F and Rudiger V 1998 NMR Studies of Cyclodextrin and Cyclodextrin Complexes Chem. Rev. 98 1755CrossRefGoogle Scholar
  57. 57.
    Rehm D and Weller A 1970 Kinetics of Fluorescence Quenching by Electron and H-atom Transfer Isr. J. Chem. 8 259CrossRefGoogle Scholar
  58. 58.
    Rehm D and Weller A 1969 Thermodynamics of the Formation of Excited EDA (electron donor-acceptor) Complexes Ber. Bunsenges. Phys. Chem. 73 834Google Scholar
  59. 59.
    Fagnoni M, Mella M and Albini A 1998 Electron-Transfer-Photosensitized Conjugate Alkylation J. Org. Chem. 63 4026CrossRefGoogle Scholar
  60. 60.
    de Rege P J F, Williams S A and Therien M J 1995 Direct Evaluation of Electronic Coupling Mediated by Hydrogen Bonds: Implications for Biological Electron Transfer Science 269 1409CrossRefGoogle Scholar
  61. 61.
    Turro N J, Ramamurthy V and Scaiano J C Principles of Molecular Photochemistry: An Introduction (Sausalito, California: University Science Books) p. 471Google Scholar
  62. 62.
    Sessler J L, Wang B and Harriman A 1993 Long-range Photoinduced Electron Transfer in an Associated but Non-Covalently linked Photosynthetic Model System J. Am. Chem. Soc. 115 10418CrossRefGoogle Scholar
  63. 63.
    Pérez-Prieto J, Pérez L P, González-Béjar M, Mirandab M A and Stiriba S-E 2005 Pyrene-Benzoylthiophene Bichromophores as Selective Triplet Photosensitizers Chem. Commun. 5569Google Scholar
  64. 64.
    Raytchev M, Pandurski E, Buchvarov I, Modrakowski C and Fiebig T 2003 Bichromophoric Interactions and Time-Dependent Excited State Mixing in Pyrene Derivatives. A Femtosecond Broad-Band Pump-Probe Study J. Phys. Chem. A 107 4592CrossRefGoogle Scholar
  65. 65.
    Rak S F, Jozefiak T H and Miller L L 1990 Electrochemistry and Near-Infrared Spectra of Anion Radicals Containing Several Imide or Quinone Groups J. Org. Chem. 55 4794CrossRefGoogle Scholar
  66. 66.
    Hara M, Tojo S, Kawai K and Majima T 2004 Formation and Decay of Pyrene Radical Cation and Pyrene Dimer Radical Cation in the Absence and Presence of Cycodextrins during Resonant Two-Photon Ionization of Pyrene and Sodium 1-Pyrene Sulfonate Phys. Chem. Chem. Phys. 6 3215CrossRefGoogle Scholar
  67. 67.
    Naqvi K R and Melø T B 2006 Reduction of Tetranitromethane by Electronically Excited Aromatics in Acetonitrile: Spectra and Molar Absorption Coefficients of Radical Cations of Anthracene, Phenanthrene and Pyrene Chem. Phys. Lett. 428 83CrossRefGoogle Scholar
  68. 68.
    Cho D W, Fujituska M, Yoon U C and Majima T 2008 Intermolecular Photoinduced Electron Transfer of 1,8-Naphthalimides in Protic Polar Solvents Phys. Chem. Chem. Phys. 10 4393CrossRefGoogle Scholar
  69. 69.
    Parker V D, Tilset M and Hammerich O 1987 Aromatic Hydrocarbon Dianions: Super Bases. Anthracene Anion Radical and Dianion Conjugate Acid PKa values J. Am. Chem. Soc. 109 7906CrossRefGoogle Scholar
  70. 70.
    Funston A M, Lymar S V, Price B S, Czapski G and Miller J R 2007 Rate and Driving Force for Protonation of Aryl Radical Anions in Ethanol J. Phys. Chem. B 111 6895CrossRefGoogle Scholar
  71. 71.
    Kira A, Arai S and Imamura M. 1971 Pyrene Dimer Cation as Studies by Pulse Radiolysis J. Chem. Phys. 34 4890CrossRefGoogle Scholar
  72. 72.
    Rodgers M A J 1972 Nanosecond pulse radiolysis of acetone. Kinetic and thermodynamic properties of some aromatic radical cations J. Chem. Soc. Farady Trans. 1 68 1278CrossRefGoogle Scholar
  73. 73.
    Mori Y, Shinoda H, Nakano T and Kitagawa T 2002 Formation and Decay Behaviors of Laser-Induced Transient Species from Pyrene Derivatives 1. Spectral Discrimination and Decay Mechanisms in Aqueous Solution J. Phys. Chem. A 106 11743CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and TechnologyCouncil of Scientific and Industrial ResearchThiruvananthapuramIndia
  2. 2.Department of ChemistryGovernment College for WomenThiruvananthapuramIndia
  3. 3.Academy of Scientific and Innovative Research (AcSIR)New DelhiIndia
  4. 4.Department of ChemistryGovernment College KariavattomThiruvananthapuramIndia

Personalised recommendations