Advertisement

Journal of Chemical Sciences

, 130:119 | Cite as

Synthesis and biological evaluation of novel benzothiophene derivatives

  • Muheb A S Algso
  • Arif Kivrak
  • Metin Konus
  • Can Yilmaz
  • Aslihan Kurt-Kizildoğan
Regular Article
  • 19 Downloads

Abstract

Benzothiophene derivatives were synthesized regioselectively using coupling reactions and electrophilic cyclization reactions. Antimicrobial properties of isolated compounds were tested against indicator microorganisms such as C. albicans ATCC 10231,  B. subtilis ATCC 6633, E. coli ATCC 25922 and S. aureus ATCC 25923. 3-(4-aminobenzoethynyl)-2-(thiophen-2-yl) benzo[b]thiophene (12E), 3-ethynyl-2-(thiophen-2-yl) benzo[b]thiophene (12L) and 3-(2-aminobenzoethynyl)-2-(thiophen-2-yl) benzo[b]thiophene (12J) displayed high antibacterial activity against S. aureus. Further, 3-iodo-2-(thiophen-2-yl) benzo[b]thiophene (10) and 3-(trimethylsilylethynyl)-2-(thiophen-2-yl) benzo[b] thiophene (12K) were found to have potentials to be used as antifungal agents against current fungal diseases. Novel 3-(1H-indole-2-yl)-2-(thiophen-2-yl) benzo[b] thiophene (16) and 3-(4-aminobenzoethynyl)-2-(thiophen-2-yl) benzo[b] thiophene (12E) also showed quite high antioxidant capacities with TEAC values of 2.5 and 1.1, respectively; which surpassed the antioxidant capacity of an universally accepted reference of trolox.

Graphical Abstract

Benzothiophene derivatives were synthesized regioselectively using coupling reactions and electrophilic cyclization reactions. Antimicrobial properties of the compounds were tested against four indicator microorganisms, and a few displayed high antibacterial activity against S. aureus. 3-(1H-indole-2-yl)-2-(thiophen-2-yl)benzo[b]thiophene (16) and 3-(4-aminobenzoethynyl)-2-(thiophen-2-yl)benzo[b]thiophene (12E) showed high antioxidant capacities which are better than the reference of trolox.

Keywords

Benzothiophenes heteroaromatic compounds biological properties antioxidant capacity anti-microbial agents 

Notes

Acknowledgements

The authors thank to The Scientific and Technological Research Council of Turkey (Project No: 115Z020) for financial supporting of silica gels, column chromatographic solvents, all other reactants and reagents. Authors, also, thank Van Yüzüncü Yil University (Project No: FBA-2017-6007) for financial supporting of glassware and salts and University of Duhok for a scholarship to Muheb A. S. Algso.

Supplementary material

12039_2018_1523_MOESM1_ESM.pdf (7.6 mb)
Supplementary material 1 (pdf 7735 KB)

References

  1. 1.
    Brasholz M, Reissig H U and Zimmer R 2009 Sugars, alkaloids, and heteroaromatics: Exploring heterocyclic chemistry with alkoxyallenes Acc. Chem. Res. 42 45CrossRefGoogle Scholar
  2. 2.
    Kivrak A and Larock R C 2010 Synthesis of dihydrobenzisoxazoles by the 3+2 cycloaddition of arynes and oxaziridines J. Org. Chem. 75 7381CrossRefGoogle Scholar
  3. 3.
    Coa J C, Castrillon W, Cardona W, Carda M, Ospina V, Munoz J A, Velez I D and Robledo S M 2015 Synthesis, leishmanicidal, trypanocidal and cytotoxic activity of quinoline-hydrazone hybrids Eur. J. Med. Chem. 101 746CrossRefGoogle Scholar
  4. 4.
    Shakdofa M M E, Shtaiwi M H, Morsy N and Abdel-Rassel T M A 2014 Metal complexes of hydrazones and their biological analytical and catalytic applications: A review Main Group Chem. 13 187Google Scholar
  5. 5.
    Rahmouni A, Souiei S, Belkacem M A, Romdhane A, Bouajila J and Ben Jannet H 2016 Synthesis and biological evaluation of novel pyrazolopyrimidines derivatives as anticancer and anti-5-lipoxygenase agents Bioorg. Chem. 66 160CrossRefGoogle Scholar
  6. 6.
    Pathak R B, Chovatia P T and Parekh H H 2012 Synthesis, antitubercular and antimicrobial evaluation of 3-(4-chlorophenyl)-4-substituted pyrazole derivatives Bioorg. Med. Chem. Lett. 22 5129CrossRefGoogle Scholar
  7. 7.
    Kazemizadeh A R, Shajari N, Shapouri R, Adibpour N and Teimuri-Mofrad R 2016 Synthesis and anti-brucella activity of some new 1,3,4-oxadiazole derivatives containing a ferrocene unit J. Iran. Chem. Soc. 13 1349CrossRefGoogle Scholar
  8. 8.
    Richardson D R, Kalinowski D S, Lau S, Jansson P J and Lovejoy D B 2009 Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents Biochim. Biophys. Acta 1790 702CrossRefGoogle Scholar
  9. 9.
    Williams R J, Spencer J P E and Rice-Evans C 2004 Flavonoids: Antioxidants or signalling molecules? Free Rad. Biol. Med. 36 838CrossRefGoogle Scholar
  10. 10.
    Edwards G and Weston A H 1993 The pharmacology of ATP-sensitive potassium channels Annu. Rev. Pharmacol. Toxicol. 33 597CrossRefGoogle Scholar
  11. 11.
    Pommier Y 2016 Topoisomerase I inhibitors: Camptothecins and beyond Nat. Rev. Cancer 6 789CrossRefGoogle Scholar
  12. 12.
    Grynyuk, II, Prylutska S V, Franskevych D V, Trush V A, Sliva T Y, Slobodyanik M S, Hurmach V V, Prylutskyy Y I, Matyshevska O P and Ritter U 2016 Combined action of \(\text{ C }_{60}\) fullerene with dimethyl-N-(benzoyl)amidophosphate or dimethyl-N-(phenylsulfonyl) amidophosphate on leukemia L1210 cells in silico and in vitro Materialwissenschaft und Werkstofftechnik 47 98CrossRefGoogle Scholar
  13. 13.
    Meixner C N, Aref M W, Gupta A, McNerny E M B, Brown D, Wallace J M and Allen M R 2017 Raloxifene Improves Bone Mechanical Properties in Mice Previously Treated with Zoledronate Calcif. Tissue Int. 101 75CrossRefGoogle Scholar
  14. 14.
    Sarret C, Pichard S, Afenjar A and Boespflug-Tanguy O 2017 Lack of long-term neurologic efficacy of zileuton in Sjogren-Larsson’s syndrome Neuropediatrics 48 205CrossRefGoogle Scholar
  15. 15.
    Croxtall J D and Plosker G L 2009 Sertaconazole: A review of its use in the management of superficial mycoses in dermatology and gynaecology Drugs 69 339CrossRefGoogle Scholar
  16. 16.
    Vogel V G, Costantino J P, Wickerham D L, Cronin W M, Cecchini R S, Atkins J N, Bevers T B, Fehrenbacher L, Pajon E R, Wade J L, Robidoux A, Margolese R G, James J, Lippman S M, Runowicz C D, Ganz P A, Reis S E, McCaskill-Stevens W, Ford L G, Jordan V C, Wolmark N and NSABP 2006 Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: The NSABP study of tamoxifen and raloxifene (STAR) P-2 trial JAMA 295 2727Google Scholar
  17. 17.
    Liu S, Zha C, Nacro K, Hu M, Cui W, Yang Y L, Bhatt U, Sambandam A, Isherwood M, Yet L, Herr M T, Ebeltoft S, Hassler C, Fleming L, Pechulis A D, Payen-Fornicola A, Holman N, Milanowski D, Cotterill I, Mozhaev V, Khmelnitsky Y, Guzzo P R, Sargent B J, Molino BF, Olson R, King D, Lelas S, Li Y-W, Johnson K, Molski T, One A, Ng A, Haskell R, Clarke W, Bertekap R, O’Connell J, Lodge N, Sinz M, Adams S, Zaczek R and Macor J E 2014 Design and synthesis of 4-heteroaryl 1,2,3,4-tetrahydroisoquinolines as triple reuptake inhibitors ACS Med. Chem. Lett. 5 760CrossRefGoogle Scholar
  18. 18.
    Sun L L, Deng C L, Tang R Y and Zhang X G 2011 CuI/TMEDA-catalyzed annulation of 2-bromo alkynylbenzenes with Na\(_{2}\)S: Synthesis of benzo b thiophenes J. Org. Chem. 76 7546CrossRefGoogle Scholar
  19. 19.
    Rafiq S M, Sivasakthikumaran R and Mohanakrishnan A K 2014 Lewis acid/bronsted acid mediated benz-annulation of thiophenes and electron-rich arenes Org. Lett. 16 2720CrossRefGoogle Scholar
  20. 20.
    Bartlett J G, Gilbert D N and Spellberg B 2013 Seven ways to preserve the miracle of antibiotics Clin. Infect. Dis. 56 1445CrossRefGoogle Scholar
  21. 21.
    Morry J, Ngamcherdtrakul W and Yantasee W 2017 Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles Redox Biol. 11 240CrossRefGoogle Scholar
  22. 22.
    Marrazzo G, Barbagallo I, Galvano F, Malaguarnera M, Gazzolo D, Frigiola A, D’Orazio N and Volti G L 2014 Role of dietary and endogenous antioxidants in diabetes Crit. Rev. Food Sci. Nutr. 54 1599CrossRefGoogle Scholar
  23. 23.
    Myung S K, Ju W, Cho B, Oh S W, Park S M, Koo B K and Park B J 2013 Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: Systematic review and meta-analysis of randomised controlled trials BMJ 346Google Scholar
  24. 24.
    Sesso H D, Buring J E, Christen W G, Kurth T, Belanger C, MacFadyen J, Bubes V, Manson J E, Glynn R J and Gaziano J M 2008 Vitamins E and C in the prevention of cardiovascular disease in men the physicians’ health study II randomized controlled trial JAMA 300 2123CrossRefGoogle Scholar
  25. 25.
    Wojcik M, Burzynska-Pedziwiatr I and Wozniak L A 2010 A review of natural and synthetic antioxidants important for health and longevity Curr. Med. Chem. 17 3262CrossRefGoogle Scholar
  26. 26.
    Chen C C, Chen C M and Wu M J 2014 Transition metal-catalyzed cascade cyclization of aryldiynes to halogenated benzo b naphtho 2,1-d thiophene derivatives J. Org. Chem. 79 4704CrossRefGoogle Scholar
  27. 27.
    Lu W D and Wu M J 2007 Halocyclization of 2-alkynylthioanisoles by cupric halides: Synthesis of 2-substituted 3-halobenzo b thiophenes Tetrahedron 63 356CrossRefGoogle Scholar
  28. 28.
    Desai R M, Dodiya D K, Trivedi A R and Shah V H 2008 Simple and efficient synthetic routes to bioactive s-triazinyl dithiocarbamate derivatives Med. Chem. Res. 17 495CrossRefGoogle Scholar
  29. 29.
    Gu W and Wang S F 2010 Synthesis and antimicrobial activities of novel 1H-dibenzo a,c carbazoles from dehydroabietic acid Eur. J. Med. Chem. 45 4692CrossRefGoogle Scholar
  30. 30.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M and Rice-Evans C 1999 Antioxidant activity applying an improved ABTS radical cation decolorization assay Free Rad. Bio. Med. 26 1231CrossRefGoogle Scholar
  31. 31.
    Kumar S, Mujahid M and Verma A K 2017 Regioselective 6-endo-dig iodocyclization: An accessible approach for iodo-benzo a phenazines Org. Biomol. Chem. 15 4686CrossRefGoogle Scholar
  32. 32.
    Miao M Z, Xu H P, Luo Y, Jin M C, Chen Z K, Xu J F and Ren H J 2017 A modular approach to highly functionalized 3-sulfonylfurans via conjugate addition of 3-cyclopropylideneprop-2-en-1-ones with sodium sulfinates and sequential 5-endo-trig iodocyclization Org. Chem. Frontiers 4 1824CrossRefGoogle Scholar
  33. 33.
    Zora M, Kivrak A and Yazici C 2011 Synthesis of pyrazoles via electrophilic cyclization J. Org. Chem. 76 6726CrossRefGoogle Scholar
  34. 34.
    Togo H and Iida S 2006 Synthetic use of molecular iodine for organic synthesis Synlett 21 59Google Scholar
  35. 35.
    Chinchilla R and Najera C 2007 The sonogashira reaction: A booming methodology in synthetic organic chemistry Chem. Rev. 107 874CrossRefGoogle Scholar
  36. 36.
    Mehta S and Larock R C 2010 Iodine/palladium approaches to the synthesis of polyheterocyclic compounds J. Org. Chem. 75 1652CrossRefGoogle Scholar
  37. 37.
    Lucio M, Nunes C, Gaspar D, Ferreira H, Lima J and Reis S 2009 Antioxidant activity of vitamin E and trolox: Understanding of the factors that govern lipid peroxidation studies in vitro Food Biophys. 4 312CrossRefGoogle Scholar
  38. 38.
    Miller N J and Rice E C A 1997 The relative contributions of ascorbic acid and phenolic antioxidants to the total antioxidant activity of orange and apple fruit juices and blackcurrant drink Food Chem. 60 331CrossRefGoogle Scholar
  39. 39.
    Ozgen M, Reese R N, Tulio A Z, Scheerens J C and Miller A R 2006 Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2’-diphenyl-1-picrylhydrazyl (DPPH) methods J. Agricul. Food Chem. 54 1151CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Muheb A S Algso
    • 1
  • Arif Kivrak
    • 1
  • Metin Konus
    • 2
  • Can Yilmaz
    • 2
  • Aslihan Kurt-Kizildoğan
    • 3
  1. 1.Department of ChemistryVan Yüzüncü Yil UniversityVanTurkey
  2. 2.Department of Molecular Biology and GeneticsVan Yüzüncü Yil UniversityVanTurkey
  3. 3.Department of Agricultural Biotechnology, Faculty of AgricultureOndokuz Mayıs UniversitySamsunTurkey

Personalised recommendations