Advertisement

Journal of Chemical Sciences

, 130:116 | Cite as

Geometric isomerism effect on catalytic activities of bis(oxalato)diaquochromates(III) for 2-chloroallyl alcohol oligomerization

  • Joanna Drzeżdżon
  • Lech Chmurzyński
  • Dagmara Jacewicz
Regular Article
  • 47 Downloads

Abstract

Abstract

The cis- and trans-potassium bis(oxalato)diaquochromates(III) have been studied towards their catalytic activity for the 2-chloroallyl alcohol oligomerization. The geometric isomerism effect on the oligomerization products under mild reaction conditions has been investigated. The molecular masses and tactic structures of obtained poly(2-chloroallyl alcohols) have been compared and analyzed. The mechanisms of oligomerization processes have been proposed. It has been proven that two studied complexes – cis-\(\hbox {K}[\hbox {Cr}(\hbox {C}_{2}\hbox {O}_{4})_{2}(\hbox {OH}_{2})_{2}]\) and trans-\(\hbox {K}[\hbox {Cr}(\hbox {C}_{2}\hbox {O}_{4})_{2}(\hbox {OH}_{2})_{2}]\cdot \hbox {3H}_{2}\hbox {O}\) are highly active catalysts for the oligomerization of the beta-olefin derivative.

Graphical Abstract

SYNOPSIS: The investigations show the catalytic activity of cis- and trans-potassium bis(oxalato)diaquochromates(III) for the 2-chloroallyl alcohol oligomerization. The geometric isomerism effect in the bis(oxalato)diaquochromates(III) has been analyzed for the values of the catalytic activity of the synthesized complexes and the identity of the oligomerization products.

Keywords

Chromium(III) complexes catalytic activities polymerization oxalate ion 

Notes

Acknowledgements

This work was supported by National Science Centre, Poland under Grant Number 2015/19/N/ST5/00276.

References

  1. 1.
    Kurtz S M, Lau E, Schmier J, Ong K L, Zhao K E and Parvizi J 2008 Infection burden for hip and knee arthroplasty in the United States J. Arthroplasty 23 984CrossRefGoogle Scholar
  2. 2.
    Chen Y, Wang L, Yu H, Zhao Y, Sun R, Jing G, Huang J, Khalid H, Abbasi N M and Akram M 2015 Synthesis and application of polyethylene-based functionalized hyperbranched oligomers Prog. Polym. Sci. 45 23CrossRefGoogle Scholar
  3. 3.
    Tipnis N P and Burgess D J 2018 Sterilization of implantable polymer-based medical devices: a review Int. J. Pharm. 544 455CrossRefGoogle Scholar
  4. 4.
    Gibson V C and Spitzmesser S K 2003 Advances in non-metallocene olefin oligomerization catalysis Chem. Rev. 103 283CrossRefGoogle Scholar
  5. 5.
    Bergamo A L, Da Cas H K, Rambo R S, Schwalm C S, Casagrande A C, Stieler R and Casagrande O L 2016 Chromium complexes bearing pyrazolyl-imine-phenoxy/pyrrolide ligands: synthesis characterization and use in ethylene oligomerization Catal. Commun. 86 77CrossRefGoogle Scholar
  6. 6.
    Hurtado J, Nuñez-Dallos N, Movilla S, Miscione G P, Peoples B C, Rojas R, Valderrama M and Fröhlich R 2017 Chromium(III) complexes bearing bis(benzotriazolyl) pyridine ligands: synthesis characterization and ethylene oligomerization behavior J. Coord. Chem. 70 803CrossRefGoogle Scholar
  7. 7.
    Drzeżdżon J, Sikorski A, Chmurzyński L and Jacewicz D 2018 New type of highly active chromium(III) catalysts containing both organic cations and anions designed for oligomerization of beta-olefin derivatives Sci. Rep. 8 2315CrossRefGoogle Scholar
  8. 8.
    Baker M I, Walsh S P, Schwartz Z and Boyan B D 2012 A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications J. Biomed. Mater. Res. B 100 1451CrossRefGoogle Scholar
  9. 9.
    Alves M H, Jensen B E, Smith A A and Zelikin A N 2011 Poly(vinyl alcohol) physical hydrogels: new vista on a long serving biomaterial Macromol. Biosci. 11 1293CrossRefGoogle Scholar
  10. 10.
    Egret H, Dimonie V L, Sudol E D, Klein A and El-Aasser M S 2001 Characterization of grafting in the emulsion polymerization of vinyl acetate using poly(vinyl alcohol) as stabilizer J. Appl. Polym. Sci. 82 1739CrossRefGoogle Scholar
  11. 11.
    Ares A, Bouza R, Pardo S G, Abad M J and Barral L 2010 Rheological mechanical and thermal behaviour of wood polymer composites based on recycled polypropylene J. Polymer Environ. 18 318CrossRefGoogle Scholar
  12. 12.
    Zhou Y, He J, Hu J, Huang X and Jiang P 2015 Evaluation of polypropylene/polyolefin elastomer blends for potential recyclable HVDC cable insulation applications IEEE Trans. Dielectr. Electr. Insul. 22 673CrossRefGoogle Scholar
  13. 13.
    Muskat I E and Strain F 1945 Polybasic acid-polyhydric alcohol esters and polymers thereof. U.S. Patent 2384115Google Scholar
  14. 14.
    Kenyon W O and Van Campen J H 1947 Copolymers of 2-halogeno-allyl alcohol or 2-halogeno-allyl esters. U.S. Patent 2419221Google Scholar
  15. 15.
    Mast W C and Fisher C H 1948 Vulcanization of chlorine-containing acrylic elastomers Ind. Eng. Chem. 40 107CrossRefGoogle Scholar
  16. 16.
    Werner A, Bowis J, Hoblik A, Schwarz H and Surber H Über metallverbindungen mit komplex gebundener oxalsäure Zweite mitteilung: uber dioxaloverbindungen Liebigs Ann. Chem. 406 261CrossRefGoogle Scholar
  17. 17.
    Jacewicz D, Siedlecka-Kroplewska K, Pranczk J, Wyrzykowski D, Woźniak M and Chmurzyński L 2014 Cis-\([\text{ Cr }(\text{ C }_{2}\text{ O }_{4})\)(pm)(\(\text{ OH }_{2})_{2}]^{+}\) coordination ion as a specific sensing ion for \(\text{ H }_{2}\text{ O }_{2}\) detection in HT22 cells Molecules 19 8533CrossRefGoogle Scholar
  18. 18.
    Van Niekerk J N and Schoening, F R L 1951 The crystal structure of trans potassium dioxalatodiaquochromiate, \(\text{ K }[\text{ Cr }(\text{ C }_{2}\text{ O }_{4})_{2}\)(\(\text{ H }_{{2}}\text{ O })_{2}] \cdot 3 \text{ H }_{{2}}\text{ O }\) Acta Crystallogr. 4 35CrossRefGoogle Scholar
  19. 19.
    Jacewicz D, Wyrzykowski D, Żamojć K, Czerwińska D, Czaja P and Chmurzyński L 2012 Thermal properties of potassium bis(oxalato)diaquochromates(III) in solid state. Trans–cis isomerization of the \([\text{ Cr }(\text{ C }_{2}\text{ O }_{4})_{2}(\text{ OH }_{2})_{2}]^{-}\) complex ion in aqueous solutions Struct. Chem. 23 333CrossRefGoogle Scholar
  20. 20.
    Kitayama T and Hatada K 2013 NMR Spectroscopy of Oligomers (Osaka: Springer)Google Scholar
  21. 21.
    Latajka R, Krężel A, Mucha A, Jewgiński M and Kafarski P 2008 Conformational investigations of bis(\(\upalpha \)-aminoalkyl) phosphinic acids and studies of the stability of their complexes with Cu(II) J. Mol. Struct. 877 64CrossRefGoogle Scholar
  22. 22.
    Banfi D and Patiny L 2008 Resurrecting and processing NMR spectra on-line Chimia 62 280CrossRefGoogle Scholar
  23. 23.
    Steinbeck Ch, Krause S and Kuhn S 2003 NMRShiftDB constructing a free chemical information system with open-source components J. Chem. Inf. Comput. Sci. 43 1733CrossRefGoogle Scholar
  24. 24.
    Cossee P 1964 Ziegler-Natta catalysis I: mechanism of polymerization of \(\upalpha \)-olefins with Ziegler-Natta catalysts J. Catal. 3 80CrossRefGoogle Scholar
  25. 25.
    Corradini P, Guerra G and Cavallo L 2004 Do new century catalysts unravel the mechanism of stereocontrol of old Ziegler-Natta catalysts? Acc. Chem. Res. 37 231CrossRefGoogle Scholar
  26. 26.
    Allegra G 1971 Discussion on the mechanism of polymerization of \(\upalpha \)-olefins with Ziegler-Natta catalysts Macromol. Chem. Phys. 145 235CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Faculty of ChemistryUniversity of GdańskGdańskPoland

Personalised recommendations