Journal of Chemical Sciences

, Volume 121, Issue 5, pp 561–574 | Cite as

Test of theoretical models for ultrafast heterogeneous electron transfer with femtosecond two-photon photoemission data

  • Lars GundlachEmail author
  • Tobias Letzig
  • Frank WilligEmail author


The energy distribution of electrons injected into acceptor states on the surface of TiO2 was measured with femtosecond two-photon photoemission. Shape and relative energetic position of these distribution curves with respect to the corresponding donor states, i.e. of perylene chromophores in the first excited singlet state attached via different bridge-anchor groups to the TiO2 surface, were compared with the predictions of different theoretical models for light-induced ultrafast heterogeneous electron transfer (HET). Gerischer’s early scenario for light-induced HET was considered and two recent explicit calculations, i.e. a fully quantum mechanical analytical model and a time-dependent density functional theory model based on molecular dynamics simulations for the vibrational modes were also considered. Based on the known vibrational structure in the photoionization spectrum of perylene in the gas phase and that measured in the linear absorption spectra of the perylene chromophores anchored on the TiO2 surface the energy distribution curves for the injected electrons were fitted assuming the excitation of the dominant 0·17 eV vibrational mode in the ionized perylene chromophore leading to a corresponding Franck-Condon dictated progression in the energy distribution curves. Each individual peak was fitted with a Voigt profile where the Lorentzian contribution was taken from the time-resolved HET data and the Gaussian contribution attributed to inhomogeneous broadening. The measured room temperature energy distribution curves for the injected electrons are explained with the fully quantum mechanical model for light-induced HET with the high energy, 0·17 eV, skeletal stretching mode excited in the ionized perylene chromophore. The corresponding energy distribution of the injected electrons is fully accommodated in acceptor states on the TiO2 surface fulfilling the wide band limit.


Fully quantum mechanical model Gerischer model heterogeneous electron transfer femtosecond two-photon photoemission ultrafast dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gerischer H and Willig F 1976 In Topics in current chemistry (ed.) F Boschke (Berlin: Springer) vol 61, p. 31Google Scholar
  2. 2.
    James T H 1977 The theory of the photographic process (ed.) T H James (New York: Macmillan) 4th ednGoogle Scholar
  3. 3.
    O’Regan B and Grätzel M 1991 Nature 353 737CrossRefGoogle Scholar
  4. 4.
    Burfeindt B, Hannappel T, Storck W and Willig F 1996 J. Phys. Chem. 100 16463; The electron transfer time reported here was found later to depend on details of the preparation procedure. The spread in the values caused by unintentionally different preparation procedures was summarized as (40 ± 25) fs in our following paper: Burfeindt B, Zimmermann C, Ramakrishna S, Hannappel T, Meissner B, Storck W and Willig F 1999 Z. Physikal. Chemie 212 67. Later our group had learned to reproduce the preparation procedure giving the shortest time constant for a given system, and we consider this preparation the best. Compare the HET time constant of 53 fs for the same Pe’-CH2-CH2-COOH acid anchored on the rutile TiO2 (110) surface derived from the 2PPE transients (figure 4 of this paper)CrossRefGoogle Scholar
  5. 5.
    Hannappel T, Burfeindt B, Storck W and Willig F 1997 J. Phys. Chem. B101 6799Google Scholar
  6. 6.
    Ernstorfer R, Gundlach L, Felber S, Storck W, Eichberger R and Willig F 2006 J. Phys. Chem. B110 25383Google Scholar
  7. 7.
    Gundlach L, Ernstorfer R and Willig F 2007 Progress in Surface Science 82 355CrossRefGoogle Scholar
  8. 8.
    Huber R, Moser J, Grätzel M and Wachtveitl J 2002 J. Phys. Chem. 106 6494Google Scholar
  9. 9.
    Benkö G, Kallioinen J, Korpi-Tommola J, Yartsev A and Sundström V 2002 J. Am. Chem. Soc. 124 489CrossRefGoogle Scholar
  10. 10.
    Gundlach L, Ernstorfer R and Willig F 2007 J. Phys. Chem. C111 13586Google Scholar
  11. 11.
    Guo J, She C and Lian T 2007 J. Phys. Chem. C111 8979Google Scholar
  12. 12.
    Wang L, May V, Ernstorfer R and Willig F 2005 J. Phys. Chem. B109 9589Google Scholar
  13. 13.
    Persson P, Lundqvist M J, Ernstorfer R, Goddard III W A and Willig F 2006 J. Chem. Theory Comput. 2 441CrossRefGoogle Scholar
  14. 14.
    Gundlach L and Willig F 2007 Chem. Phys. Lett. 449 82CrossRefGoogle Scholar
  15. 15.
    Gundlach L, Felber S, Storck W, Galoppini E, Wei Q and Willig F 2005 Res. Chem. Intermed. 31 39CrossRefGoogle Scholar
  16. 16.
    Paddon-Row M N, Oliver A M, Warman J M, Smit K J, de Haas H O and Verhoeven J W 1988 J. Phys. Chem. 92 6958CrossRefGoogle Scholar
  17. 17.
    Koeberg M, de Groot M, Verhoeven J W, Lokan N R, Shephard M J and Paddon-Row M N 2001 J. Phys. Chem. A105 3417Google Scholar
  18. 18.
    Moser J, Punchihewa S, Infelta P P and Grätzel M 1991 Langmuir 7 3012CrossRefGoogle Scholar
  19. 19.
    Duncan W R and Prezhdo O V 2005 J. Phys. Chem. 109 365Google Scholar
  20. 20.
    Gundlach L, Ernstorfer R and Willig F 2006 Phys. Rev. B74 035324Google Scholar
  21. 21.
    Mulliken R S and Person W B 1969 Molecular complexes (New York: Wiley)Google Scholar
  22. 22.
    Borgias B A, Cooper S R, Koh Y B and Raymond K N 1984 Inorg. Chem. 23 1009CrossRefGoogle Scholar
  23. 23.
    Wang L, Willig F and May V 2007 J. Chem. Phys. 126 134110Google Scholar
  24. 24.
    Wang L, May V, Ernstorfer R, Gundlach L and Willig F 2007 In Analysis and control of ultrafast photo-induced reactions (eds) O Kühn and L Wöste (Berlin: Springer) vol 87Google Scholar
  25. 25.
    Wang L, Willig F and May V 2006 J. Chem. Phys. 124 014712CrossRefGoogle Scholar
  26. 26.
    Sebastian K L and Tachya M 2006 J. Chem. Phys. 124 064713CrossRefGoogle Scholar
  27. 27.
    Mohr J, Schmickler W and Badiali J P 2006 Chem. Phys. 324 140CrossRefGoogle Scholar
  28. 28.
    Li J, Nilsing M, Kondov I, Wang H, Persson P, Lunell S and Thoss M 2008 J. Phys. Chem. C112 12326Google Scholar
  29. 29.
    Duncan W R and Prezhdo O V 2008 J. Am. Chem. Soc. 130 9756CrossRefGoogle Scholar
  30. 30.
    Gundlach L, Szarko J, Socaciu-Siebert L D, Neubauer A, Ernstorfer R and Willig F 2007 Phys. Rev. B75 125320Google Scholar
  31. 31.
    Gerischer H 1972 Photochem. Photobiol. 16 243; The model for the energy distribution of the electronic excited molecular donor state D donor*; in this paper is the extension of an earlier model for electron injection in the dark where the corresponding occupied molecular donor state was labeled D red. Gerischer H 1961 Z. Physikal. Chem. (Neue Folge) 27 49CrossRefGoogle Scholar
  32. 32.
    Tsivlin D V, Willig F and May V 2008 Phys. Rev. B77 035319Google Scholar
  33. 33.
    Gundlach L, Ernstorfer R and Willig F 2007 Appl. Phys. A88 481Google Scholar
  34. 34.
    Letzig T, Schimper H-J, Hannappel T and Willig F 2005 Phys. Rev. B71 033308Google Scholar
  35. 35.
    Ernstorfer R 2004 Spectroscopic investigation of photoinduced heterogeneous electron transfer Ph D Thesis (Berlin: Freie Universität)Google Scholar
  36. 36.
    Pascual J, Camassel J and Mathieu H 1978 Phys. Rev. B18 5606; Gupta V P and Ravindra N M 1980 J. Phys. Chem. Solids 41 591Google Scholar
  37. 37.
    Boschi R, Murrell J N and Schmidt W 1972 Faraday Discuss. Chem. Soc. 54 116CrossRefGoogle Scholar
  38. 38.
    Pope M and Swenberg C E 1999 Electronic processes in organic crystals and polymers (New York: Oxford University Press) 2nd ednGoogle Scholar
  39. 39.
    Cronemeyer D C 1951 MIT Laboratory for insulation research Rept. 46; Parker R A 1961 Phys. Rev. 124 1719Google Scholar
  40. 40.
    Dutoit E C, Cardon F and Gomez W P 1976 Ber. Bunsenges. Phys. Chem. 80 475Google Scholar
  41. 41.
    Gundlach L 2005 Surface electron transfer dynamics in the presence of organic chromophores Ph D Thesis (Berlin: Freie Universität)Google Scholar
  42. 42.
    Ramakrishna S, Willig F and May V 2000 Phys. Rev. B62 R16330Google Scholar
  43. 43.
    Muscat J P and Newns D M 1978 Progress in Surface Science 9 1CrossRefGoogle Scholar
  44. 44.
    Ramakrishna S, Willig F, May V and Knorr A 2003 J. Phys. Chem. B107 607Google Scholar
  45. 45.
    Zimmermann C, Willig F, Ramakrishna S, Burfeindt B, Pettinger B, Eichberger R and Storck W 2001 J. Phys. Chem. B105 9245Google Scholar
  46. 46.
    Rego L G C and Batista V S 2003 J. Am. Chem. Soc. 125 7989CrossRefGoogle Scholar
  47. 47.
    Abuabara S G, Rego L G C and Batista V S 2005 J. Am. Chem. Soc. 127 18234CrossRefGoogle Scholar
  48. 48.
    Duncan W R, Stier W M and Prezhdo O V 2005 J. Am. Chem. Soc. 127 7941CrossRefGoogle Scholar
  49. 49.
    Marcus R A 1964 Annu. Rev. Phys. Chem. 15 155CrossRefGoogle Scholar
  50. 50.
    Memming R 2001 Semiconductor electrochemistry (New York: Wiley)Google Scholar
  51. 51.
    Page 40 in ref 1, page 245 in ref 30, handwritten manuscript of H Gerischer given to F WGoogle Scholar
  52. 52.
    Shenvi N, Cheng H and Tully J C 2006 Phys. Rev. A74 062902Google Scholar
  53. 53.
    Mohr J-H and Schmickler W 2000 Phys. Rev. Lett. 84 1051CrossRefGoogle Scholar
  54. 54.
    Miller R J D, McLendon G, Nozik A, Schmickler W and Willig F 1995 In Surface electron transfer processes (New York: Wiley-VCH) ch. 5, p. 167Google Scholar

Copyright information

© Indian Academy of Sciences 2009

Authors and Affiliations

  1. 1.Department of ChemistryRutgers University-NewarkNewarkUSA
  2. 2.Johanna Solar TechnologyBrandenburgGermany
  3. 3.Fritz Haber Institut der MPGBerlinGermany

Personalised recommendations